advertisement

William Marsh BNs-to-causal-identificati

50 %
50 %
advertisement
Information about William Marsh BNs-to-causal-identificati
Sports

Published on December 10, 2008

Author: aSGuest6002

Source: authorstream.com

advertisement

Graphical Causal Models: Determining Causes from Observations : Graphical Causal Models: Determining Causes from Observations William Marsh Risk Assessment and Decision Analysis (RADAR) Computer Science RADAR Group, Computer Science : RADAR Group, Computer Science Risk Assessment and Decision Analysis Research areas Software engineering, safety, finance, legal A new initiative in medical data analysis: DIADEM Norman Fenton Group leader Martin Neil http://www.dcs.qmul.ac.uk/researchgp/radar/ Outline : Outline Graphical Causal Models Bayesian networks: prediction or diagnosis Causal induction: learning causes from data Causal effect estimation: strength of causal relationships from data DIADEM project Bayesian Nets : Bayesian Nets Detecting Asthma Exacerbations : Detecting Asthma Exacerbations Aim to assist early detection of asthma episodes in Paediatric A&E Using only data already available electronically Network created by Experts Data Bayes’ Theorem : Bayes’ Theorem Joint probability Bayes’ Theorem (Made Easy) : Bayes’ Theorem (Made Easy) A person has a positive test result How likely is it they are infected? 17% Infection Test yes, no pos, neg False positive P(T=pos|I=no) = 5% Negligible false negative Infection rate: P(I) = 1% Medical Uses of BNs : Medical Uses of BNs Diagnosis Differential diagnosis from symptoms Prediction Likely outcome Building a BN From expert knowledge  expert system From data  data mining Beyond Bayesian Networks : Beyond Bayesian Networks Cause versus Association : Cause versus Association Both represent fever  infection association ‘Causal model’ has arrow from cause to effect Infection Fever Infection Fever or ? Causal Induction : Causal Induction Discover causal relationships from data Sometimes distinguishable … different conditional independence Causal Induction – Application : Causal Induction – Application Discover causal relationships from data Need lots of data Applied to gene regulatory networks Data from micro-array experiments Recent explanation of limitations Estimating Causal Effects : Estimating Causal Effects Suppose A is a cause of B What is the causal effect? Is it p(B | A) ? Benefits of Sports? : Benefits of Sports? Is there a relationship between sport and exam success? Data available ‘Intelligence’ correlate Is this the correct test? P(exam=pass|sport) > P(exam=pass| no-sport) Benefits of Sports? : Benefits of Sports? When we condition on ‘sport’ Probability for ‘exam result’ Probability for ‘intelligence’ changes What if I decide to start sport? p(pass|sport) > p(pass| no-sport) 73% 67% intelligence sport exam result Intervention v Observation : Intervention v Observation Causal effect differs from conditional probability Mostly interested in consequence of change Causal effects can be measured by a Randomised Control Trial Causal effect of sport on exam results not identifiable P(pass|do(sport)) < P(pass| do(no sport)) intelligence sport exam result Benefit of Sport : Benefit of Sport New observable variable ‘attendance at lectures’ Causal effect of sport on exam results now identifiable sport (S) exam result (E) intelligence attendance (A) Estimating Causal Effects : Estimating Causal Effects Rules to convert causal to statistical questions Generalises e.g. stratification, potential outcomes Assumptions: a causal model Some assumptions may be testable Causal model Some variables observed, others not measured Some causal effects identifiable Challenges Causal models for complex applications Statistical implications Example Application : Example Application Royal London trauma service Criteria for activation of the trauma team Aim to prevent unnecessary trauma team calls Extensive records of trauma patient outcomes US study of 1495 admissions proposed new ‘triage’ criteria Significant decrease in overtriage 51%  29% Insignificant increase in undertriage 1%  3% None of the patients undertriaged by new criteria died Does this show safety of new criteria? DIADEM Project : DIADEM Project Digital Economy in Healthcare : Digital Economy in Healthcare Data Information and Analysis for clinical DEcision Making EPSRC Digital Economy Cluster Partnership between solution providers and clinical data analysis problem holders Summarise unsolved data analysis needs, in relation to the analysis techniques available Join the DIADEM cluster Cluster Activities and Outcomes : Cluster Activities and Outcomes Engage stakeholders and build a community: Creation of a community web-site and forum Meetings with potential ‘problem holders’ Workshops A road map: data and information Follow-up proposal A self-sustaining website – health data analytics Summary : Summary Bayesian networks Prediction and diagnosis Causal induction Identify (some) causal relationships from (lots of) data Causal effects Experimental results from … … non-experimental data … assumptions (causal model) Join the DIADEM cluster

Add a comment

Related presentations

Related pages

www.wallstreet-online.de

Hier sollte eine Beschreibung angezeigt werden, diese Seite lässt dies jedoch nicht zu.
Read more

William Marsh – Wikipedia

Marsh, William: ALTERNATIVNAMEN: Marsh, Bill: KURZBESCHREIBUNG: amerikanischer Großmeister der Kampfkunst: GEBURTSDATUM: 1944: GEBURTSORT: Jena (Louisiana ...
Read more

Prinz William und Herzogin Kate: Süße Weihnachtsgrüße mit ...

Prinz William und Herzogin Kate freuen sich auf ihr erstes Weihnachten zu viert.
Read more

Die böse Saat: Amazon.de: William March: Bücher

William March . EUR 13,87. Hinweise und Aktionen. Entdecken Sie die aktuellen BILD Bestseller. Jede Woche neu. Hier klicken. Kunden, die diesen ...
Read more

Alles über die Baby-Prinzessin von Kate und William

Herzogin Kate & Prinz William Das sagen die Sterne über ihre Prinzessin! Am 2. Mai kam in London die Tochter von Herzogin Kate und Prinz William zur Welt.
Read more

Using Bayesian Networks to Model Accident Causation in the ...

Using Bayesian Networks to Model Accident Causation in the UK Railway Industry William Marsh, RADAR Group, Queen Mary, University of London, Mile End Road ...
Read more

Planen Prinz William und Kate schon Baby Nummer 3?

Kaum ist Prinz William und Kates zweites Kind Prinzessin Charlotte getauft, fangen die Spekulationen von vorne an: Wann kommt das "Royal Baby 3"? Britische ...
Read more

Herzogin Kate hat Doppelgängerin bei den Olympischen Spielen

Herzogin Kate stattet den Spielen diesmal keinen Besuch ab. Die Verwechslungsgefahr bleibt also trotz Ähnlichkeit gering. Alle News zu William ...
Read more