Uraikan tentang algoritma rijndael dan berikan contoh

50 %
50 %
Information about Uraikan tentang algoritma rijndael dan berikan contoh
Technology

Published on March 10, 2014

Author: imronamasiti93

Source: slideshare.net

Description

algoritma AES dan DES

4. Uraikan tentang algoritma rijndael dan berikan contoh: Algoritma Rijndael merupakan standar enkripsi dengan kunci simetris yang diadopsi oleh pemerintah Amerika Serikat. Standar ini terdiri atas 3 blok cipher ,yaitu AES-128, AES-192, dan AES – 256. Masing-masing cipher memiliki ukuran 128 bit dengan ukuran kunci masing masing 128,192,256. Contoh Algoritma Rijndael: Pesan :INDONESI Kunci :2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c Input bits 49 4e 44 4f 4e 45 53 49 00 00 00 00 00 00 00 00 Key bits 0f 15 71 c9 47 d9 e8 59 0c b7 ad d6 af 7f 67 98 w[0] = 0f 15 71 c9 w[1] = 47 d9 e8 59 w[2] = 0c b7 ad d6 w[3] = af 7f 67 98 RotWord()= 7f 67 98 af SubWord()= d2 85 46 79 ^ Rcon()= d3 85 46 79 w[4] = dc 90 37 b0

w[5] = 9b 49 df e9 w[6] = 97 fe 72 3f w[7] = 38 81 15 a7 RotWord()= 81 15 a7 38 SubWord()= 0c 59 5c 07 ^ Rcon()= 0e 59 5c 07 w[8] = d2 c9 6b b7 w[9] = 49 80 b4 5e w[10] = de 7e c6 61 w[11] = e6 ff d3 c6 RotWord()= ff d3 c6 e6 SubWord()= 16 66 b4 8e ^ Rcon()= 12 66 b4 8e w[12] = c0 af df 39 w[13] = 89 2f 6b 67 w[14] = 57 51 ad 06 w[15] = b1 ae 7e c0 RotWord()= ae 7e c0 b1 SubWord()= e4 f3 ba c8 ^ Rcon()= ec f3 ba c8 w[16] = 2c 5c 65 f1 w[17] = a5 73 0e 96 w[18] = f2 22 a3 90

w[19] = 43 8c dd 50 RotWord()= 8c dd 50 43 SubWord()= 64 c1 53 1a ^ Rcon()= 74 c1 53 1a w[20] = 58 9d 36 eb w[21] = fd ee 38 7d w[22] = 0f cc 9b ed w[23] = 4c 40 46 bd RotWord()= 40 46 bd 4c SubWord()= 09 5a 7a 29 ^ Rcon()= 29 5a 7a 29 w[24] = 71 c7 4c c2 w[25] = 8c 29 74 bf w[26] = 83 e5 ef 52 w[27] = cf a5 a9 ef RotWord()= a5 a9 ef cf SubWord()= 06 d3 df 8a ^ Rcon()= 46 d3 df 8a w[28] = 37 14 93 48 w[29] = bb 3d e7 f7 w[30] = 38 d8 08 a5 w[31] = f7 7d a1 4a RotWord()= 7d a1 4a f7

SubWord()= ff 32 d6 68 ^ Rcon()= 7f 32 d6 68 w[32] = 48 26 45 20 w[33] = f3 1b a2 d7 w[34] = cb c3 aa 72 w[35] = 3c be 0b 38 RotWord()= be 0b 38 3c SubWord()= ae 2b 07 eb ^ Rcon()= b5 2b 07 eb w[36] = fd 0d 42 cb w[37] = 0e 16 e0 1c w[38] = c5 d5 4a 6e w[39] = f9 6b 41 56 RotWord()= 6b 41 56 f9 SubWord()= 7f 83 b1 99 ^ Rcon()= 49 83 b1 99 w[40] = b4 8e f3 52 w[41] = ba 98 13 4e w[42] = 7f 4d 59 20 w[43] = 86 26 18 76 Initial state 49 4e 00 00 4e 45 00 00 44 53 00 00

4f 49 00 00 Round Key 0f 47 0c af 15 d9 b7 7f 71 e8 ad 67 c9 59 d6 98 Round 1 46 09 0c af 5b 9c b7 7f 35 bb ad 67 86 10 d6 98 After SubBytes 5a 01 fe 79 39 de a9 d2 96 ea 95 85 44 ca f6 46 After ShiftRows 5a 01 fe 79 de a9 d2 39 95 85 96 ea 46 44 ca f6 After MixColumns 1e 23 d6 a5 1f 98 2a d8 7f 75 5e 8e 29 a7 d2 af Round Key dc 9b 97 38 90 49 fe 81

37 df 72 15 b0 e9 3f a7 Round 2 c2 b8 41 9d 8f d1 d4 59 48 aa 2c 9b 99 4e ed 08 After SubBytes 25 6c 83 5e 73 3e 48 cb 52 ac 71 14 ee 2f 55 30 After ShiftRows 25 6c 83 5e 3e 48 cb 73 71 14 52 ac 30 ee 2f 55 After MixColumns 49 fa 26 d0 fa 2e d7 02 a9 25 9d 91 40 2f 59 97 Round Key d2 49 de e6 c9 80 7e ff 6b b4 c6 d3 b7 5e 61 c6 Round 3 9b b3 f8 36

33 ae a9 fd c2 91 5b 42 f7 71 38 51 After SubBytes 14 6d 41 05 c3 e4 d3 54 25 81 39 2c 68 a3 07 d1 After ShiftRows 14 6d 41 05 e4 d3 54 c3 39 2c 25 81 d1 68 a3 07 After MixColumns f7 f0 f8 d2 5d cc 25 07 ea 5e a1 d6 58 98 ef 43 Round Key c0 89 57 b1 af 2f 51 ae df 6b ad 7e 39 67 06 c0 Round 4 37 79 af 63 f2 e3 74 a9 35 35 0c a8 61 ff e9 83

After SubBytes 9a b6 79 fb 89 11 92 d3 96 96 fe c2 ef 16 1e ec After ShiftRows 9a b6 79 fb 11 92 d3 89 fe c2 96 96 ec ef 16 1e After MixColumns 0e f7 1c e5 4d 3b 73 4d 43 91 a7 67 99 54 e2 35 Round Key 2c a5 f2 43 5c 73 22 8c 65 0e a3 dd f1 96 90 50 Round 5 22 52 ee a6 11 48 51 c1 26 9f 04 ba 68 c2 72 65 After SubBytes 93 00 28 24 82 52 d1 78 f7 db f2 f4

45 25 40 4d After ShiftRows 93 00 28 24 52 d1 78 82 f2 f4 f7 db 4d 45 25 40 After MixColumns 74 d9 0a 4e 77 fb ff 0d e9 ed ca cb 94 af bd b5 Round Key 58 fd 0f 4c 9d ee cc 40 36 38 9b 46 eb 7d ed bd Round 6 2c 24 05 02 ea 15 33 4d df d5 51 8d 7f d2 50 08 After SubBytes 71 36 6b 77 87 59 c3 e3 9e 03 d1 5d d2 b5 53 30 After ShiftRows 71 36 6b 77 59 c3 e3 87

d1 5d 9e 03 30 d2 b5 53 After MixColumns e8 bd c3 2c 9b 9e ba 34 c1 22 6b 03 7b 7b b1 bb Round Key 71 8c 83 cf c7 29 e5 a5 4c 74 ef a9 c2 bf 52 ef Round 7 99 31 40 e3 5c b7 5f 91 8d 56 84 aa b9 c4 e3 54 After SubBytes ee c7 09 11 4a a9 cf 81 5d b1 5f ac 56 1c 11 20 After ShiftRows ee c7 09 11 a9 cf 81 4a 5f ac 5d b1 20 56 1c 11 After MixColumns 58 25 cb 5c

66 fb eb 5c 99 b1 16 11 9f 9d ff ea Round Key 37 bb 38 f7 14 3d d8 7d 93 e7 08 a1 48 f7 a5 4a Round 8 6f 9e f3 ab 72 c6 33 21 0a 56 1e b0 d7 6a 5a a0 After SubBytes a8 0b 0d 62 40 b4 c3 fd 67 b1 72 e7 0e 02 be e0 After ShiftRows a8 0b 0d 62 b4 c3 fd 40 72 e7 67 b1 e0 0e 02 be After MixColumns 1e a1 63 0b ad aa 47 94 c3 0f 38 82 fe 25 89 30

Round Key 48 f3 cb 3c 26 1b c3 be 45 a2 aa 0b 20 d7 72 38 Round 9 56 52 a8 37 8b b1 84 2a 86 ad 92 89 de f2 fb 08 After SubBytes b1 00 c2 9a 3d c8 5f e5 44 95 4f a7 1d 89 0f 30 After ShiftRows b1 00 c2 9a c8 5f e5 3d 4f a7 44 95 30 1d 89 0f After MixColumns 45 5b 66 f2 db 51 56 4b b7 2d 2f 87 2f c2 f5 03 Round Key fd 0e c5 f9 0d 16 d5 6b 42 e0 4a 41

cb 1c 6e 56 After SubBytes 6c fc 0a 2b f6 a0 ec b7 e6 bd 4d b4 69 1d 14 fc After ShiftRows 6c fc 0a 2b a0 ec b7 f6 4d b4 e6 bd fc 69 1d 14 Output d8 46 75 ad 2e 74 fa d0 be a7 bf a5 ae 27 3d 62 Hasil Enkrisi :d8 2e be ae 46 74 a7 27 75 fa bf 3d ad d0 a5 62 5. Uraikan algoritma standar enkripsi data dan berikan contoh DES termasukkedalamsistemkriptografisimetridantergolongjeniscipherblok.DESberope rasipadaukuranblok 64 bit. DES Mengenkripsikan 64 bit plainteksmenjadi 64 bit cipherteksdenganmenggunakan 56 bit kunci internal (internal key) atauupa- kunci (subkey). Kunci internal dibangkitkandarikuncieksternal (external key ) yang panjangnya 64 bit. Skema global darialgoritma DES adalahsebagaiberikut: 1. Blok plainteksdipermutasidenganmatrikspermutasiawal (initial permutation atau IP).

2. Hasilpermutasiawalkemudian di - enciphering -sebanyak 16 kali (16 putaran). Setiapputaranmenggunakankunci internal yang berbeda. 3. Hasil encipheringkemudiandipermutasidenganmatrikspermutasibalikan (invers initial permutation atauIP -1)menjadiblokcipherteks. Contoh : Pesan :INDONESI DES Key/Triple DES Key Part A:3b3898371520f75e Triple DES Key Part B : 922fb510c71f436e Input bits: 01001001 01001110 01000100 01001111 01001110 01000101 01010011 01001001 Key bits: 00111011 00111000 10011000 00110111 00010101 00100000 11110111 01011110 CD[0]: 0100010 0110000 0001101 0111101 1100100 1110110 0010000 1111111 CD[1]: 1000100 1100000 0011010 1111010 1001001 1101100 0100001 1111111 KS[1]: 010111 000000 100001 001100 010101 011000 111101 001111 CD[2]: 0001001 1000000 0110101 1110101 0010011 1011000 1000011 1111111 KS[2]: 010100 010010 110111 110000 011001 001001 011111 001100 CD[3]: 0100110 0000001 1010111 1010100 1001110 1100010 0001111 1111100 KS[3]: 110101 001110 010010 000101 110110 001011 010011 101111 CD[4]: 0011000 0000110 1011110 1010001 0111011 0001000 0111111 1110010 KS[4]: 010100 111000 011100 000110 011011 101101 111010 101001 CD[5]: 1100000 0011010 1111010 1000100 1101100 0100001 1111111 1001001 KS[5]: 011010 001001 000010 100111 000110 100111 110101 111011 CD[6]: 0000000 1101011 1101010 0010011 0110001 0000111 1111110 0100111

KS[6]: 101100 011000 000001 101110 101011 111101 100100 110000 CD[7]: 0000011 0101111 0101000 1001100 1000100 0011111 1111001 0011101 KS[7]: 101000 000100 001010 110010 110000 010110 111101 110010 CD[8]: 0001101 0111101 0100010 0110000 0010000 1111111 1100100 1110110 KS[8]: 101101 000001 101100 110100 111111 011000 101000 011100 CD[9]: 0011010 1111010 1000100 1100000 0100001 1111111 1001001 1101100 KS[9]: 001000 101101 110101 000010 100100 111000 011001 111100 CD[10]: 1101011 1101010 0010011 0000000 0000111 1111110 0100111 0110001 KS[10]: 011010 000110 000101 010111 110110 011011 111110 000100 CD[11]: 0101111 0101000 1001100 0000011 0011111 1111001 0011101 1000100 KS[11]: 001001 011100 010100 011001 001110 000110 011010 111101 CD[12]: 0111101 0100010 0110000 0001101 1111111 1100100 1110110 0010000 KS[12]: 010001 110000 000110 110011 011110 110111 100010 000111 CD[13]: 1110101 0001001 1000000 0110101 1111111 0010011 1011000 1000011 KS[13]: 101111 111000 100010 010001 101001 100110 000110 111011 CD[14]: 1010100 0100110 0000001 1010111 1111100 1001110 1100010 0001111 KS[14]: 000111 110010 001010 001010 101001 110011 101101 000111 CD[15]: 1010001 0011000 0000110 1011110 1110010 0111011 0001000 0111111 KS[15]: 001110 100001 010010 011100 111101 101000 001111 110010

CD[16]: 0100010 0110000 0001101 0111101 1100100 1110110 0010000 1111111 KS[16]: 000100 010111 110010 000001 110101 111110 000101 001110 L[0]: 11111111 01000000 00111110 11101001 R[0]: 00000000 00000000 10011011 01011010 Round 1 E : 000000 000000 000000 000001 010011 110110 101011 110100 KS : 010111 000000 100001 001100 010101 011000 111101 001111 E xor KS: 010111 000000 100001 001101 000110 101110 010110 111011 Sbox: 1011 1111 0001 0000 0001 0011 0111 0101 P : 01100110 10111000 01101110 00110010 L[i]: 00000000 00000000 10011011 01011010 R[i]: 10011001 11111000 01010000 11011011 Round 2 E : 110011 110011 111111 110000 001010 100001 011011 110111 KS : 010100 010010 110111 110000 011001 001001 011111 001100 E xor KS: 100111 100001 001000 000000 010011 101000 000100 111011 Sbox: 0010 1101 0110 0111 0000 0010 0010 0101 P : 10000000 01101001 01011110 00110100 L[i]: 10011001 11111000 01010000 11011011 R[i]: 10000000 01101001 11000101 01101110 Round 3 E : 010000 000000 001101 010011 111000 001010 101101 011101

KS : 110101 001110 010010 000101 110110 001011 010011 101111 E xor KS: 100101 001110 011111 010110 001110 000001 111110 110010 Sbox: 1000 0100 0001 0101 0110 1010 0010 0110 P : 10010100 10100110 00010100 10110000 L[i]: 10000000 01101001 11000101 01101110 R[i]: 00001101 01011110 01000100 01101011 Round 4 E : 100001 011010 101011 111100 001000 001000 001101 010110 KS : 010100 111000 011100 000110 011011 101101 111010 101001 E xor KS: 110101 100010 110111 111010 010011 100101 110111 111111 Sbox: 0011 1110 0011 0010 0000 0010 1111 1011 P : 01001110 01111010 00001110 00010111 L[i]: 00001101 01011110 01000100 01101011 R[i]: 11001110 00010011 11001011 01111001 Round 5 E : 111001 011100 000010 100111 111001 010110 101111 110011 KS : 011010 001001 000010 100111 000110 100111 110101 111011 E xor KS: 100011 010101 000000 000000 111111 110001 011010 001000 Sbox: 1100 0001 1010 0111 0011 1011 1010 0110 P : 10110000 11100010 11110101 10100101 L[i]: 11001110 00010011 11001011 01111001 R[i]: 10111101 10111100 10110001 11001110 Round 6

E : 010111 111011 110111 111001 010110 100011 111001 011101 KS : 101100 011000 000001 101110 101011 111101 100100 110000 E xor KS: 111011 100011 110110 010111 111101 011110 011101 101101 Sbox: 0000 1000 1100 1100 0101 1011 1000 1000 P : 00111000 00101101 00110001 01000001 L[i]: 10111101 10111100 10110001 11001110 R[i]: 11110110 00111110 11111010 00111000 Round 7 E : 011110 101100 000111 111101 011111 110100 000111 110001 KS : 101000 000100 001010 110010 110000 010110 111101 110010 E xor KS: 110110 101000 001101 001111 101111 100010 111010 000011 Sbox: 0111 1010 0110 0011 1101 1110 0101 1111 P : 11111011 01111111 10001010 00101110 L[i]: 11110110 00111110 11111010 00111000 R[i]: 01000110 11000011 00111011 11100000 Round 8 E : 001000 001101 011000 000110 100111 110111 111100 000000 KS : 101101 000001 101100 110100 111111 011000 101000 011100 E xor KS: 100101 001100 110100 110010 011000 101111 010100 011100 Sbox: 1000 0011 0010 0001 1101 1010 1001 1100 P : 11111011 10100100 01000000 00100101 L[i]: 01000110 11000011 00111011 11100000 R[i]: 00001101 10011010 10111010 00011101

Round 9 E : 100001 011011 110011 110101 010111 110100 000011 111010 KS : 001000 101101 110101 000010 100100 111000 011001 111100 E xor KS: 101001 110110 000110 110111 110011 001100 011010 000110 Sbox: 0100 0110 1110 1011 1111 0110 1010 0100 P : 11100001 01100101 10000101 11111101 L[i]: 00001101 10011010 10111010 00011101 R[i]: 10100111 10100110 10111110 00011101 Round 10 E : 110100 001111 110100 001101 010111 111100 000011 111011 KS : 011010 000110 000101 010111 110110 011011 111110 000100 E xor KS: 101110 001001 110001 011010 100001 100111 111101 111111 Sbox: 1011 1111 0100 1100 1011 1100 0011 1011 P : 01111011 10001011 01011110 11011010 L[i]: 10100111 10100110 10111110 00011101 R[i]: 01110110 00010001 11100100 11000111 Round 11 E : 101110 101100 000010 100011 111100 001001 011000 001110 KS : 001001 011100 010100 011001 001110 000110 011010 111101 E xor KS: 100111 110000 010110 111010 110010 001111 000010 110011 Sbox: 0010 0101 0111 0010 1001 0101 1011 1100 P : 00101111 01000001 01100110 00111101 L[i]: 01110110 00010001 11100100 11000111

R[i]: 10001000 11100111 11011000 00100000 Round 12 E : 010001 010001 011100 001111 111011 110000 000100 000001 KS : 010001 110000 000110 110011 011110 110111 100010 000111 E xor KS: 000000 100001 011010 111100 100101 000111 100110 000110 Sbox: 1110 1101 0100 1000 1100 0010 1101 0100 P : 00000011 10111101 11000010 01110001 L[i]: 10001000 11100111 11011000 00100000 R[i]: 01110101 10101100 00100110 10110110 Round 13 E : 001110 101011 110101 011000 000100 001101 010110 101100 KS : 101111 111000 100010 010001 101001 100110 000110 111011 E xor KS: 100001 010011 010111 001001 101101 101011 010000 010111 Sbox: 1111 0000 1110 0110 0010 0101 0011 1011 P : 00001010 11000011 10111111 10001110 L[i]: 01110101 10101100 00100110 10110110 R[i]: 10000010 00100100 01100111 10101110 Round 14 E : 010000 000100 000100 001000 001100 001111 110101 011101 KS : 000111 110010 001010 001010 101001 110011 101101 000111 E xor KS: 010111 110110 001110 000010 100101 111100 011000 011010 Sbox: 1011 0110 0101 1101 1100 1011 0101 0000 P : 11010111 10110101 00110010 01010010

L[i]: 10000010 00100100 01100111 10101110 R[i]: 10100010 00011001 00010100 11100100 Round 15 E : 010100 000100 000011 110010 100010 101001 011100 001001 KS : 001110 100001 010010 011100 111101 101000 001111 110010 E xor KS: 011010 100101 010001 101110 011111 000001 010011 111011 Sbox: 1001 1010 0010 1101 0110 1010 0011 0101 P : 11010010 10101100 00011100 11100110 L[i]: 10100010 00011001 00010100 11100100 R[i]: 01010000 10001000 01111011 01001000 Round 16 E : 001010 100001 010001 010000 001111 110110 101001 010000 KS : 000100 010111 110010 000001 110101 111110 000101 001110 E xor KS: 001110 110110 100011 010001 111010 001000 101100 011110 Sbox: 1000 0110 1010 0100 0011 1001 0111 0111 P : 01110010 10010010 00111101 10110100 L[i]: 01010000 10001000 01111011 01001000 R[i]: 11010000 10001011 00101001 01010000 LR[16] 11010000 10001011 00101001 01010000 01010000 10001000 01111011 01001000 Output 00011100 00011000 00000000 00111110 11001001 00001100 11001011 01110000 Hasil Enkripsi :1c18003ec90ccb70

Add a comment

Related presentations

Related pages

Berikan pendapat anda tentang peranan keluarga dalam ...

... yang wajar diambil contoh dan diaplikasikan ... Berikan Pandangan Anda Tentang Sistem Dan ... Uraikan tentang algoritma rijndael dan berikan ...
Read more

PDF_CHIP_06_2008 - pt.scribd.com

Sertakan juga bahasan tentang perangkat seluler dan PDA yang bisa ... memudahkan bility yang memiliki fungsi dan Anda membuat.0. dan beberapa contoh ...
Read more

PDF_CHIP_06_2008 - id.scribd.com

Sertakan juga bahasan tentang perangkat seluler dan PDA yang bisa ... sejumlah feature editing yang lebih cerdas. dan beberapa contoh ...
Read more

PDF_CHIP_06_2008 - scribd.com

Sertakan juga bahasan tentang perangkat seluler dan PDA yang ... depan di Indonesia adalah World Ahead. dan beberapa contoh proyek. serta dukungan ...
Read more

Slack Books - Documents

×Close Share Slack Books. Embed ...
Read more

HAMDUN blog

... sehingga anda bisa mengkonfigurasi Mikrotik Router dari Desktop Windows secara mudah dan cepat ... di berikan ke user hotspot. Anda ... white;">Contoh: ...
Read more