Thermal Analysis of Passive Radiators for Interplanetary Space Applications

58 %
42 %
Information about Thermal Analysis of Passive Radiators for Interplanetary Space Applications

Published on January 5, 2017

Author: Austeen

Source: slideshare.net

1. i THERMAL ANALYSIS OF A PASSIVE RADIATOR FOR INTER-PLANETARY SPACE APPLICATIONS A PROJECT REPORT Submitted by In fulfillment for the award of the degree of BACHELOR OF ENGINEERING in Mechanical Engineering S.N. PATEL INSTITUTE OF TECHNOLOGY & RESEARCH CENTRE, Umrakh, Bardoli Gujarat Technological University, Ahmedabad 2015-16 Dave Yash Jayeshbhai (120490119029) Patel Dipakkumar Sureshbhai (120490119061) Modi Bijankkumar Krishnakant (120490119067) Rajput Shailesh Santosh Kumar Singh (120490119093) Dorik Abhishek Deepak (120490119094)

2. ii

3. iii

4. iv

5. v

6. vi

7. ii S.N. PATEL INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE, UMARAKH, BARDOLI. MECHANICAL ENGINEERING 2015-16 CERTIFICATE Date: 31/05/2016 This is to certify that the dissertation entitled “THERMAL ANALYSIS OF A PASSIVE RADIATOR FOR INTER-PLANETARY SPACE APPLICATIONS” has been carried out by: Dave Yash Jayeshbhai (120490119029) Patel Dipakkumar Sureshbhai (120490119061) Modi Bijankkumar Krishnakant (120490119067) Rajput Shailesh Santosh Kumar Singh (120490119093) Dorik Abhishek Deepak (120490119094) Under our guidance in fulfillment of the degree of Bachelor of Mechanical Engineering (8th Semester) of Gujarat Technological University, Ahmedabad during the academic year 2016. Guides-: Head of the Department: ____________________ ____________________ Mr. Harshal T. Shukla Dr. Piyush S. Jain (Asst. Prof.)

8. iii EXTERNAL EXAMINAR APPROVAL This is to certify that the project work embodied in this report entitled “THERMAL ANALYSIS OF A PASSIVE RADIATOR FOR INTER- PLANETARY SPACE APPLICATIONS” was carried out by: Dave Yash Jayeshbhai (120490119029) Patel Dipakkumar Sureshbhai (120490119061) Modi Bijankkumar Krishnakant (120490119067) Rajput Shailesh Santosh Kumar Singh (120490119093) Dorik Abhishek Deepak (120490119094) at SITARAMBHAI NARANJI PATEL INSTITUTE OF TECHNOLOGY AND RESEARCH CENTRE, UMARAKH (049) is approved for award of the degree of B.E. Mechanical Engineering by Gujarat Technological University. Date: 31/05/2016 Place: Examiner(s): 1. 2.

9. iv Acknowledgement The project associates wish to thank all of the authors whose collective insights from their research papers and publications have made this study possible; David G. Gilmore the editor of Spacecraft Thermal Control Handbook Volume I, Jose I. Rodriguez, Howard Tseng and Burt Zhang from Jet Propulsion Laboratory of California Institute of Technology for their research paper on Thermal Control System of the Moon Mineralogy Mapper Instrument. We would like to thank our project guide Prof. Harshal Shukla [Project Guide] for enlightening the work and his constant encouragement despite of oncoming hurdles throughout the project and making this work possible. I express my gratitude to Dr. Piyush Jain [HOD MECH.] for co-operation and support and also thank all the people who have contributed in their own way in making this project successful. Yash Dave Dipak Patel Bijank Modi Shailesh Rajput Abhishek Dorik

10. v Abstract An elaborate growth has been observed in the use of Satellites for various domestic, military and navigational applications. Satellites carry various Infrared instruments and Electronic Packages in them collectively called Payloads. The Payload can function properly only if it is maintained within specified temperature ranges. The Thermal Control System (TCS) of a Satellite keeps the equipment temperature within the specified operating range. It is broadly divided into two classes namely, Passive Thermal Control System (PTCS) and Active Thermal Control System (ATCS). The current study aims to appraise the merits of using Passive Radiators for Interplanetary Space Applications as it draws no power from the satellite system, and measuring its Effectiveness in Dissipating the heat developed inside the payload to space against Environmental Backloads incident over its surface from the Celestial Surroundings. It maintains the desired temperature range by Controlling Conductive and Radiative Heat Paths through the selection of Geometrical Configurations and Thermo-Optical Properties of the surface in addition to savings in Mass and Power respectively which has always been a crucial element in spacecraft design and configuration. A Parametric study is conducted to explore the scopes of using Passive Radiators. The entire system is Modelled and Simulated in FEA software UG NX 7.5 with a Flat Plate Radiator used in the initial Space Thermal Analysis.

11. vi List of Figures 2.1 Radiator energy balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 2.2 Satellite thermal environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Solar Spectral Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 2.4 Ideal representation of four basic passive-control surfaces . . . . . . . . . . . . . . . . . . .10 2.5 Second-surface mirror thermal finish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.1 Package Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 4.2 Dissipator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 4.3 Thermal Strap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 4.4 Package and Radiator with MLI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.1 Boundary conditions for Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.2 Orbital Heating Parameters for Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.3 Case 1-Radiator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.4 Case 1-Dissipator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 5.5 Case 1-Thermal Strap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.6 Case 1-Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 5.7 Case 3-Radiator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 5.8 Case 3-Dissipator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 5.9 Case 3-Thermal Strap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.10 Case 3-Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

12. vii List of Tables 2.1 Thermo-optical properties of common surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . .12 3.1 Spacecraft Specification for case study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1 Specification of satellite package model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 5.1 Boundary conditions for Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2 Orbital Heating Parameters for Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.3 Time Interval for Transient Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 5.4 Case 1 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.5 Case 2 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.6 Case 3 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.7 Case 4 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.8 Case 5 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.9 Case 6 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.10 Case 7 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.11 Case 8 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.12 Case 9 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.13 Case 10 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.14 Case 11 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.15 Case 12 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.16 Case 13 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.17 Case 14 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.18 Case 15 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.19 Case 16 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.20 Case 17 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.21 Case 18 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.22 Case 19 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.23 Case 20 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.24 Case 21 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.25 Case 22 Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

13. viii Nomenclature TCS Thermal Control System PTCS Passive Thermal Control System ATCS Active Thermal Control System AFT Allowable Flight Temperature FEA Finite Element Analysis FEM Finite Element Method IR Infrared Albedo Sun-light reflected off planet MLI Multi-layer Insulation SSM Secondary Surface Mirrors OSR Optical Solar Reflector M3 Moon Mineralogy Mapper BOL Beginning of Life EOL End of Life

Add a comment