Text mining tools for semantically enriching scientific literature

50 %
50 %
Information about Text mining tools for semantically enriching scientific literature

Published on March 6, 2008

Author: dullhunk

Source: slideshare.net

Description

presentation by Sophia Ananiadou at the Cheminformatics workshop 4th March 2008

Text mining tools for semantically enriching the scientific literature Sophia Ananiadou Director National Centre for Text Mining School of Computer Science University of Manchester

Need for enriching the literature • Need for semantic search i.e. beyond keywords • Need for technologies enabling focused semantic search via the creation of semantic metadata from literature “The current scientific literature, were it to be presented in semantically accessible form, contains huge amounts of undiscovered science” Peter Murray-Rust, Data-driven science: A Scientist’s view. NSF/JISC Repositories Workshop, 2007

Impact of text mining • Extraction of named entities (genes, proteins, metabolites, etc) • Discovery of concepts allows semantic annotation of documents – Improves information access by going beyond index terms, enabling semantic querying – Improves clustering, classification of documents – Visualisation based on semantic metadata derived from text mining results

Beyond named entities: facts • Extraction of relationships, events (facts) for knowledge discovery – Information extraction, more sophisticated annotation of texts (fact annotation) – Enables even more advanced semantic querying

Enriched annotation • Text Mining provides enriched annotation layers – the user will be able to carry out an easily expressed semantic query which will deliver facts matching that semantic query rather than just sets of documents he has to read… • Information Extraction and not just Information Retrieval • Fact extraction and not just sentence extraction

Annotations derived from Text Mining lexicon ontology text processing raw deep annotated part-of-speech named entity (unstructured) syntactic (structured) tagging recognition text parsing text ……………………….... S ... Secretion of TNF was abolished by BHA in VP PMA-stimulated U937 NP VP cells. …………………… PP NP PP PP NP NN IN NN VBZ VBN IN NN IN JJ NN NNS . Multi-layered Secretion of TNF was abolished by BHA in PMA-stimulated U937 cells . annotations protein_molecule organic_compound cell_line negative regulation

Mining associations from MEDLINE • FACTA: Finding Associated Concepts with Text Analysis – What diseases are related to a particular chemical? – What proteins are related to a particular disease? – etc. • EBIMed http://www.ebi.ac.uk/Rebholz-srv/ebimed/index.jsp • PubMatrix http://pubmatrix.grc.nia.nih.gov/ : • FACTA http://text0.mib.man.ac.uk/software/facta/ – Quick and interactive

Query

Click!

Innovative Technologies applied to: • Term recognition • Named entity recognition Semantic Mark-up • Fact extraction ! semantic mark-up improves search ! classifying, linking documents ! knowledge discovery, hidden links, associations, hypothesis generation

Natural Language Processing technologies • Part-of-speech tagging: GENIA – Tuned to biomedical text: 97-99% precision • Dictionary-based named-entity recognition • Deep parsing – Predicate argument relations (90%) • Protein-protein interaction extraction • Event / fact extraction

Automatic Term Recognition http://www.nactem.ac.uk/software/termine/

Recognising and Disambiguating Acronyms in Biomedical Literature http://www.nactem.ac.uk/software/acromine

Named-entity recognition The peri-kappa B site mediates human immunodeficiency DNA virus virus type 2 enhancer activation in monocytes … cell_type ! Entity types (defined by Ontologies) quot; Genes/protein names quot; Enzymes, substances, metabolites, etc quot; GO ontology, KEGG, CheBI, etc

Leveraging resources • Annotated texts (GENIA corpus, GENIA event corpus) • Resources for bio-text mining – resource-building NLP tools for text-based knowledge harvesting (NaCTeM) – BioLexicon • Over 1.5M lexical entries for bio-text mining and growing…. • Containing rich linguistic information for bio-text mining

Population Process Existing repositories chemical, disease, enzyme, species names Subclustering gene/protein names of term variants new gene/protein names Medline abstracts Named entity Term mapping recognition by normalization Bio-Lexicon terminological verbs Manual curation on-going Verb subcategorization verb subcategorization frames

Semantic search based on facts • MEDIE: an interactive advanced IR system retrieving facts • Performs a semantic search ! Core technology annotates texts quot; GENIA tagger quot; syntactic structures quot; Enju (deep parser) quot; facts quot; Dictionary-based named entity recognition J. Tsujii

Medie system overview Off-line On-line Deep parser Semantically- RegionAlgebra Input Textbase annotated Search engine Entity Textbase Recognizer Search Query results

Sentence Retrieval System Using Semantic Representation MEDIE

InfoPubMed ! An interactive Information Extraction system and an efficient PubMed search tool, helping users to find information about biomedical entities such as genes, proteins, and the interactions between them. ! System components quot; Deep parsing technology quot; Extraction of protein-protein interactions quot; Multi-window interface on a browser

InfoPubMed Interactions and not just co-occurrences. Calculated using ML and deep semantics.

Semantic Information Retrieval http://nactem4.mc.man.ac.uk:8080/Kleio/ # KLEIO: a semantically enriched information retrieval system for biology # Offers textual and metadata searches across MEDLINE # Leverages terminology technologies #Named entity recognition: gene, protein, metabolite, organ, disease, symptom

KLEIO architecture

Fewer documents with more precise query

Linking and enriching pathways with text – REFINE (BBSRC) quot; MCISB and NaCTeM (Kell, Ananiadou, Tsujii) – to integrate text mining techniques with visualisation technologies for better understanding of the evidence for biochemical and signalling pathways – to enrich pathway models encoded in the Systems Biology Markup Language (SBML) with evidence derived from text mining

2 Steps for linking text with pathways IkB P IkB U ! IkB Pathways Pathway Construction IkB IkB P Biological events IkB IkB U IkB ! Event Extraction … IkappaB is phosphorylated … Literature … Ikappa B ubiquitination … … degradation of IkB… Tsujii-lab, Tokyo

Event Annotation - Example

Statistics & References ! Statistics quot; 36,114 events have been identified from and annotated to ! 1,000 Medline abstracts, which contain ! 9,372 sentences quot; Kim, Jin-Dong, Tomoko Ohta and Jun'ichi Tsujii (2008) Corpus annotation for mining biomedical events from literature. BMC Bioinformatics quot; http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA

Acknowledgements • Junichi Tsujii and his lab (University of Tokyo) MEDIE, InfoPubMed, event annotation • Yoshimasa Tsuruoka (NER, FACTA, KLEIO, REFINE) • Naoaki Okazaki (TerMine, AcroMine) • Yutaka Sasaki (BioLexicon, NER, KLEIO) • John McNaught (BioLexicon, BOOTStrep project) • Chikashi Nobata (KLEIO) • Douglas Kell (REFINE)

Add a comment

Related presentations

Related pages

Text mining tools for semantically enriching scientific ...

Text mining tools for semantically enriching the scientific literature Sophia Ananiadou Director National Centre for Text ...
Read more

Text mining tools for semantically enriching scientific ...

Text mining tools for semantically enriching scientific literature. Text mining tools for semantically enriching the scientific literature Sophia ...
Read more

Tools for semantically enriching the scientific literature

Text mining tools for semantically enriching the scientific literature Sophia Ananiadou Director. National Centre for Text Mining. School of Computer Science
Read more

Enriching Literature Reviews with Text Mining Tools Case ...

Share Enriching Literature Reviews with Text Mining ... uncovering research gaps and new scientific ... Text mining tools for semantically enriching ...
Read more

Study on Feature Selection Methods for Text Mining - PdfSR.com

Text mining has been employed in a wide ... Text mining tools for semantically enriching scientific ... This paper gives a literature survey on the ...
Read more

Enriching Literature Reviews with Text Mining Tools Case ...

Enriching Literature Reviews with Text Mining Tools Case: Group Support Systems. by theta
Read more

National Centre for Text Mining - Wikipedia

The National Centre for Text Mining ... of biomedical text mining systems. GREC – a semantically annotated ... of biomedical scientific text. ...
Read more

National Centre for Text Mining — NaCTeM — Research

Text Mining Research Projects ... via semantically enhanced and interactive ... Interoperability of text mining tools is a key objective and an organizing ...
Read more

Biomedical text mining and its applications in cancer research

Biomedical text mining and its ... database with text mining tools and ... by experts from the full text of the scientific literature, ...
Read more