advertisement

sigmod01

50 %
50 %
advertisement
Information about sigmod01
Education

Published on January 23, 2008

Author: Michela

Source: authorstream.com

advertisement

Proxy-Server Architectures for OLAP:  Proxy-Server Architectures for OLAP Panos Kalnis, Dimitris Papadias THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY The Problem:  The Problem Data warehouses: Large repositories of historical summarized information Distributed: Centralized or decentralized. Static structure! WWW: new opportunities to access warehouses. Example:Stock market data Professional brokers: Access directly the warehouse by special purpose OLAP software Individual investors around the world: Use web browsers. Slow network? Server overloading? Caching? Internet Singapore Hong Kong Tokyo London Stock Market Warehouse OLAP clients OLAP Cache Servers (OCS):  OLAP Cache Servers (OCS) Similar to WWW Proxy-Servers Geographically spanned and connected through an arbitrary network They cache results from OLAP queries Can derive new results from the cached data Clients connect to an OCS. If the OCS cannot answer, the query is redirected to a neighbor OCS or to the warehouse Result: Lower network cost, better scalability, lower response time Internet London Stock Market Warehouse OLAP clients OCS OCS OCS vs. WWW Proxy-Servers:  OCS vs. WWW Proxy-Servers OCS has computational capabilities. The cache admission and replacement policies are optimized for OLAP operations. OCS can update its contents incrementally, instead of invalidating the cached data Background:  Background Data Cube Lattice: Interdependencies among views SELECT P_id, T_id, SUM(Sales) FROM data GROUP BY P_id, T_id Client-Server OLAP Caching Watchman: Semantic caching Dynamat: Stores fragments Caching chunks OCSs may use any of these methods The prototype caches entire views System Architecture:  System Architecture Centralized: Query optimization and cache control in a central site (intranet) Semi-centralized: Only query optimization in central site. Each OCS controls its local cache Autonomous: All decisions are taken locally (internet) Multiple levels of caching Cooperation among OCSs Physical organization and fragmentation may differ in each OCS Query Optimizer:  Query Optimizer A client sends a query q Autonomous policy: OCS has the exact answer OCS cannot answer q OCS can derive q Cost = Read + Transfer Query Optimizer (cont.):  Query Optimizer (cont.) Autonomous: Scalable, easy to implement, high availability. Large, unstructured, dynamic environments BUT may produce inefficient plans Centralized (and semi-centralized): A central site has global information for all OCSs. Creates the execution and routing plan for all queries Low availability, low scalability Suitable for intranets Caching Policy: Autonomous:  Caching Policy: Autonomous Lower Benefit First: Considers interdependencies, but: Cost() difficult to calculate; If v cannot be answered locally we assume that it is answered by the warehouse The complexity of LBF grows quadratically with the number of materialized views We evict a set from the cache if the combined benefit < benefit(u). Select the victim set: Similar idea to [HRU96] Caching Policy: Centralized:  All the decisions are taken at the central site Centralized policy uses Smaller Penalty First Experiments show that the difference between SPF and LBF is not significant In general: A bad decision of the caching algorithm does not affect the performance significantly BUT a bad decision of the optimizer has significant impact Caching Policy: Centralized Updates:  Updates Changes are propagated periodically to the warehouse. It computes deltas for its materialized views No down time for the OCSs OCS updates its cache on-demand: Invalidate vs. incrementally update Deltas are treated as normal data Deltas are evicted at the end of the update period Non-updated results are also evicted Experimental Setup:  Experimental Setup APB and TPC-H Cmax = max Cache as a percentage of the entire cube 1500 queries at each OCS OCS configuration Client-Side-Cache Worst case Effect of Network Cost:  Effect of Network Cost 3 OCSs – we vary the speed of the links to the DW In slow networks, OCSs utilize the contents of their neighbors In fast networks, many queries reach the warehouse, because the computation cost is lower DCSR vs. Cmax Warehouse Hit Ratio vs. Cmax Autonomous vs. Semi-centralized:  Autonomous vs. Semi-centralized Centralized  Semi-Centralized High tightness or many OCSs  Autonomous  Semi-Centralized 100 OCSs Conclusions:  Conclusions OCS: Architecture for caching OLAP results Beneficial for ad-hoc, geographically spanned and possibly mobile users, who sporadically need to access a warehouse Complimentary to both client-side-cache systems and distributed OLAP approaches Future work: Prototype on top of a DBMS, support of multiple DWs, finer granularity of cached data, special queries.

Add a comment

Related presentations

Related pages

Jiawei Han - University of Illinois at Urbana–Champaign

Jiawei Han. Abel Bliss Professor, Department of Computer Science Univ. of Illinois at Urbana-Champaign Rm 2132, Siebel Center for Computer Science
Read more

Reconciling Schemas of Disparate Data Sources: A Machine ...

Reconciling Schemas of Disparate Data Sources: A Machine-Learning Approach AnHai Doan, Pedro Domingos, Alon Halevy ! #" $% & ' ...
Read more

Optimization Issues in Querying Compressed Databases

Title: Optimization Issues in Querying Compressed Databases Author: zhiyuan chen Last modified by: zhiyuan chen Created Date: 9/26/2000 9:41:35 PM
Read more

dblp: ACM SIGMOD Conference 2001: Santa Barbara, CA, USA

http://www.acm.org/sigmod/sigmod01/eproceedings. Research Track Papers Cubes and Aggregates. view. electronic edition @ acm.org; export record. BibTeX; RIS ...
Read more

Industrial Sessions Summary: SIGMOD 2001 - WHAT's NEW ...

http://www.acm.org/sigs/sigmod/sigmod01/ eproceedings/. Data Management in a Highly-Connected World ... Industrial Sessions Summary: SIGMOD 2001 Author:
Read more

Massive Data Analysis On Our Ever-Slower Computers

http://control.cs.berkeley.edu/sigmod01/ Online Query Processing A Tutorial Peter J. Haas IBM Almaden Research Center Joseph M. Hellerstein UC Berkeley ...
Read more

ACM SIGMOD Conference

http://www.acm.org/sigmod/sigmod01/eproceedings Contents Awards - WebDB 2001 - NRDM 2001 SIGMOD Conference 2000: Dallas, ...
Read more

Data-DrivenUnderstanding and Refinementof Schema Mappings

Data-DrivenUnderstanding and Refinementof Schema Mappings Ling Ling Yan Renee´ J. Miller Laura M. Haas Ronald Fagin IBM Almaden Univ. Toronto IBM Almaden ...
Read more

www.cse.psu.edu

vti_encoding:SR|utf8-nl vti_timelastmodified:TR|15 Jan 2003 16:55:14 -0000 vti_extenderversion:SR|5.0.2.6738 vti_lineageid:SR|{4715E907-B848-426E-89F0 ...
Read more