Shawna henderson_cmhc_retrofitconf_oct009

60 %
40 %
Information about Shawna henderson_cmhc_retrofitconf_oct009
Business & Mgmt

Published on February 18, 2014

Author: ShawnaHenderson

Source: slideshare.net

Description

A presentation of the results of a study for CMHC (Canada Mortgage and Housing Corporation), The Path to Net Zero: Deep Energy Retrofits. Presentation was made at the CMHC Affordable Retrofits Conference in October 2009.

(Deep)  Energy  Retrofits   by  House  Type     Inves7ng  in  Exis7ng  Housing   Shawna  Henderson,  CEO   Bfreehomes  Design  Ltd.  

Energy  Efficiency  programs  aim  for  a  20  to  30%   reduc7on  in  space  and  water  hea7ng  needs.   A  deep  energy  reduc7on  aims  for  70  to  90%.  

St.  Margarets   Bay,  1992   St.  Margarets   Bay,  1998   St.  Margarets   Bay,  1996   Lunenburg,   2002   Wallace  River,   2007  

New  SINGLE  FAMILY  housing  =  about   110,000/year   13.2  million  exis7ng  homes  in  Canada   Nova  Sco7a:  nearly  50%  pre-­‐1970  

CMHC About Your House Series: Renovating for Energy Savings http://www.cmhc-schl.gc.ca/en/co/renoho/reensa/index.cfm Free download

Approaching  Net  Zero  Energy  in  Exis7ng  Houses   12  house  types,  6  ci7es   Range  of  ages:   1922  to  2000   1.  How  does  house  type/age   affect  NZEEH?   2.  How  does  climate  affect   NZEEH?  

•  The  Twike:  2  person  human-­‐electric  hybrid   •  5kw  electric  motor,  Top  speed  55  mph   •  4  -­‐  8  kWh/100km,  equiv.  to  300  -­‐  600  miles  per  gallon  

House  as  a  System   Lost  Opportuni7es  –  Low  Hanging  Fruit   House  Yoga  –  Flexibility  &  Endurance  

Op7mizing  a  System…  

Image  from:  thehamptons.files.wordpress.com  

If this, then… Where you’re going If this, then… Where you are If this, then…

Approaching  Net  Zero  Energy  in  Exis7ng  Houses   12  house  types,  6  ci7es   Range  of  ages:   1922  to  2000   1.  How  does  house  type/age   affect  NZEEH?   2.  How  does  climate  affect   NZEEH?  

Approaching  Net  Zero  Energy  in  Exis7ng  Houses   Vancouver   Calgary   Toronto   Montréal   Halifax   Whitehorse  

Approaching  Net  Zero  Energy  in  Exis7ng  Houses     Upgraded  Envelope  Targets  (RSI/R)   Averages from superinsulated houses built/designed in the last 5 years 
   in Canada and northern US, incl. EQuilibrium House Initiative projects Ceiling Main Walls Exposed Floors Below Grade Walls Slab Vancouver 10.6 (60) 7.0 (40) 7.0 (40) 7.0 (40) 1.8 (10) Calgary Toronto 14.4 (80) 10.6 (60) 10.6 (60) 7.0 (40) 10.6 (60) 7.0 (40) 7.0 (40) 1.8(10) 7.0 (40) 1.8 (10) Montreal 14.4 (80) 10.6 (60) 10.6 (60) 7.0 (40) 1.8 (10) Halifax Whitehorse 10.6 (60) 14.4 (80) 7.0 (40) 10.6 (60) 7.0 (40) 10.6 (60) 7.0 (40) 1.8 (10) 7.0 (40) 1.8 (10)

Approaching  Net  Zero  Energy  in  Exis7ng  Houses     Best  Case  Scenario:  Vancouver  Bungalow     General  informa7on   –  –  –  –  –  footprint  =  17  x  6  m  (55  x  20  m)   4/12  roof,  no  significant  heel  @  eave     framed  w/2x4  walls   poured  concrete  basement   single  pane  windows  

Approaching  Net  Zero  Energy  in  Exis7ng  Houses        

Assump7ons   Full-­‐size,  central  hea7ng  system   Diminishing  returns  on  increased  insula7on     Crappy  windows   Business  as  usual  

Residen7al  uses   account  for  nearly  20%   of  overall  energy   consump7on  in  Canada     Data:  Office  of  Energy  Efficiency,  NRCan  

Meeting DHW load becomes becomes bigger challenge than space heating as envelope improves Energy  Use  Comparison   400   350   300   250   50%  reduc7on   Ligh7ng   200   Appliances   Water   150   80%  reduc7on   Space   100   50   0   As  Is   Conven7onal   DER  with  solar    

Ligh7ng   5%   Shift the relationships between purposes and energy use As  Is   Appliances   13%   Water   17%   DER  with  Solar  Thermal   Space     65%   Ligh7ng   13%   Space     33%   Conven3onal   Ligh7ng   6%   Appliances   46%   Appliances   16%   Water   21%   Space     57%   Water   8%  

2  Halifax  ‘Gut  Rehabs’   ecoENERGY:  5,  15   ecoENERGY  upgrade:  ±60   Deep  Energy  Retrofit:  ±80   Drop  space  hea7ng   load  by  ±  50%   Drop  space  hea7ng   load  by  ±  70%   Envelope  first,   then  mechanicals  

FLAT ROOF OPTION OPTIMIZES SPACE @ 3RD FLOOR 35'-0" 10'-0" 9" 10'-0" 9" 8'-0" NOTE: bay area squared off at 3rd storey roofline studies for 1375/79 and next door 1375/79 and next door AS IS FLAT ROOF W/FRONT GABLES RAISED developed upper floor

Insula7on:   R21/3.5”  soy-­‐based  polyurethane   in  original  wall  cavity   R15/4”  blown  cellulose  in  new   cross-­‐strapped  cavity      

#1:  get  rid  of  water  problems  

A:  No  direct  contact  w/concrete  or   masonry  walls  or  floors  for  moisture   sensi7ve  materials   B:  Moisture  tolerant  materials  are   not  in  contact  with  materials  that   will  absorb  water  if  there  is  problem   C:  Air7ght  construc7on  on   founda7on  walls  and  floors  warms   first  condensing  surface,  mi7ga7ng   moisture  issues  in  living  space   Plumbing  and  electrical  services  run  in  front  of  2  lb  foam  insula7on  and  behind   standoff  wall  –  full  depth  insula7on  throughout  basement  and  header  area  

Insula7on     Spray-­‐on     Foam   Blown-­‐in   Fibrous    

Drainage  Plane  

Think  pool  liner   Illustra7on  from   www.buildingscience.com  

5-­‐  year  payback  based  on  $  spent  vs.  energy  savings  not  the  whole  story  –      but  how  to  quan7fy  comfort?   Windows,  siding  =  ‘permanent’  components  w/20  yr  planning  horizon  

Inside  glass  temp  also   impacts   condensa7on  and   moisture  issues  in  a   house  as  envelope  is   improved.     Mechanical   ven7la7on  required  –   low  space  hea7ng   loads:  can  we  use   ven7la7on  system  to   distribute  heat?  

Two  of  each:     60%  efficient,  120k   Btu  oil  boiler       80  gal.  electric   water  heaters  +   indirect  tank,   uninsulated  in   uncondi7oned   space   …  to  this     (reasonable  facsimile  of  system)   From  this  …   97%  efficient,  50k  Btu  natural  gas   condensing  boiler  augmen7ng  solar   thermal  system     DHW  and  space  hea7ng  delivered  via  dual-­‐ coil,  120  gallon  storage  tank  

Solar  Thermal  Combi  System  

From  cast  iron  rads  to   infloor  radiant  on  12  and   16  inch  centres  

From  high-­‐temp  hydronic   baseboards  to  low-­‐temp  rads  

Energy  Reduc7ons   70%  reduc7on  in  space  hea7ng   +  90%  of  domes7c  hot  water  supplied   Hea7ng  Load:  160k  –  80k  –  50k  Btu   Energy  Use:  ??!!  –  152mil–  60  mil  Btu   51000kWh  –  18000  kWh  

House  as  an  Investment   Define  investment  period   What’s  in  your  pocket  at  the  end?   Resale-­‐ability?     Non-­‐energy  benefits?   Investment     horsepower?   Alterna7ves  …   Scenarios  for  house   Scenarios  for  money  

What’s  the  payback?   72”  screen?     Maybe  we  need  glasses?!   Two  wall  ovens  +  microwave?  How  many  cooks?!     22 c.f. and up fridges? Whose army are we feeding?!?!

Phases   Dramproofing  &  Insula7on  1   Residing/Reroofing  &  Insula7on  2   Replace  Hea7ng  System     Rough-­‐in  Solar  Thermal   System   Install  Drainwater   Recovery   Address  ven7la7on   requirements   Adjust  exis7ng  hea7ng   equipment  if  possible   High-­‐efficiency,  small   capacity  unit  backing  up   solar  thermal  system  w/ low-­‐temperature   hydronics  

Investment/Energy  Costs   Conven7onal:  $22k   Oil    $8,100   Electricity    $7,300   Nat  Gas    $4,000   Deep  Energy  Retrofit:  $37k   Oil    $5,100   Electricity    $4,600   Nat  Gas    $2,600   DER  w/solar  combi:  $52k   Oil    $2,100   Electricity    $1,900   Nat  Gas    $1,000  

DER  =     1.85x  up  front  costs   of  Conven7onal   Conven7onal  =     1.7x  projected  costs     of  DER  

How   to   Frame   the   Analysis   of   Return   on   Investment  for  Energy  Savings  Measures     Among  the  prac7cal  range  of  investment  decisions:        Which  provides  the  largest  “return”?    Which  are  in  your  budget  range?    Which  achieves  the  desired  returns  within  your  investment  7meframe?        What  non-­‐energy  benefits  are  driving  your  decision?    e.g.,  comfort  and  aesthe7c  benefits,  health  and  safety,  greater  control  over  energy  use,   ease  of  selling  home,  enhanced  pride  and  pres7ge,  environmental  responsibility    

Add a comment

Related presentations

Related pages

Cmhc | LinkedIn

View 6162 Cmhc posts, presentations, experts, and more. Get the professional knowledge you need on LinkedIn. LinkedIn Home What is LinkedIn? Join Today
Read more