advertisement

Seqüência de Fibonacci - Aspectos Matemáticos

50 %
50 %
advertisement
Information about Seqüência de Fibonacci - Aspectos Matemáticos
Education

Published on March 7, 2014

Author: RodrigoThiagoPassosSilva

Source: slideshare.net

Description

Seqüência de Fibonacci - Aspectos Matemáticos: demonstração de algumas propriedades matemáticas relativas à seqüência de Fibonacci.
advertisement

¨ˆ SEQUENCIA DE FIBONACCI Aspectos matem´ticos a Rodrigo Thiago Passos Silva rodrigotpsilva@gmail.com A seq¨ˆncia de Fibonacci ´ uma seq¨ˆncia de n´meros reais ue e ue u dada por  1,    F (n) = Fn = 1,    Fn−1 + Fn−2 num´rica, ou seja, uma fun¸˜o F : N → R e ca se n = 1 se n = 2 . se n ≥ 3 Em outras palavras, ´ uma seq¨ˆncia cujos dois primeiros termos s˜o iguais a 1 e os demais correspondem e ue a a ` soma dos dois anteriores. Os primeiros termos da seq¨ˆncia s˜o: ue a F1 = 1 F2 = 1 F3 = 2 F4 = 3 F5 = 5 F6 = 8 F7 = 13 F8 = 21. Observemos agora que F1 = 1 = F3 − 1 F1 + F2 = 2 = F4 − 1 F1 + F2 + F3 = 4 = F5 − 1 F1 + F2 + F3 + F4 = 7 = F6 − 1 F1 + F2 + F3 + F4 + F5 = 12 = F7 − 1. n Fi = Fn+2 − 1 . Portanto, conjecturemos que i=1 Demonstra¸˜o ca ´ a Utilizaremos o Princ´ ıpio da Indu¸ao Matem´tica. E f´cil observar que a propriedade conjecturada ´ c˜ a e 1 Fi = 1 e F1+2 − 1 = F3 − 1 = 2 − 1 = 1. v´lida para n = 1 pois a i=1 k Fi = Fk+2 − 1 queremos Supondo que a propriedade ´ v´lida para n = k, ou seja, que ´ verdade P (k) : e a e i=1 k+1 Fi = Fk+3 − 1 ´ v´lida. e a mostrar que P (k + 1) : i=1 Somando-se Fk+1 em ambos os lados da igualdade assumida como hip´tese temos o k Fi + Fk+1 = Fk+2 + Fk+1 − 1. i=1 k+1 O lado esquerdo equivale a Fi e, como o termo posterior na seq¨ˆncia de Fibonacci ´ dado pela soma ue e i=1 k+1 dos dois anteriores, o lado direito equivale a Fk+3 − 1. Assim, concluimos que Fi = Fk+3 − 1 como i=1 quer´ ıamos demonstrar. 1

Agora, observemos a soma dos termos da seq¨ˆncia de ´ ue ındice ´ ımpar n=1 n=2 n=3 F1 = 1 = F2 F1 + F3 = 3 = F4 F1 + F3 + F5 = 8 = F6 . n Conjecturemos, ent˜o, que a F2i−1 = F2n . i=1 Demonstra¸˜o ca 1 A propriedade conjecturada ´ v´lida para n = 1 pois e a F2i−1 = F1 = 1 e F2n = 1. i=1 k Supomos que ela ´ v´lida tamb´m para n = k, ou seja, que e a e F2i−1 = F2k ´ verdadeiro. Somando-se o e i=1 termo F2k+1 em ambos os lados da hip´tese indutiva obtemos o k F2i−1 + F2k+1 = F2k + F2k+1 . i=1 Ultilizando-se racioc´ ınio an´logo ao da demonstra¸ao anterior conclu´ a c˜ ımos que a igualdade acima ´ igual e a k+1 F2i−1 = F2k+2 = F2(k+1) . i=1 Da´ conclu´ ı ımos que se a propriedade ´ v´lida para n = k ´ tamb´m v´lida para n = k + 1. Portanto, pelo e a e e a princ´ ıpio da indu¸˜o matem´tica, ´ v´lida para todo n > 1. ca a e a Podemos observar tamb´m o comportamento da soma dos termos da seq¨ˆncia de ´ e ue ındice par n=1 n=2 n=3 F2 = 1 = F3 − 1 F2 + F4 = 4 = F5 − 1 F2 + F4 + F6 = 12 = F7 − 1. n F2i = F2n+1 − 1 . Logo, podemos conjecturar que i=1 Demonstra¸˜o ca Tomemos a soma dos termos da seq¨ˆncia de Fibonacci at´ o 2n-´simo termo. Temos ue e e 2n Fi = F1 + F2 + F3 + F4 + F5 · · · + F2n−1 + F2n = F2n+2 − 1. i=1 Tomemos a soma dos termos ´ ımpares da seq¨ˆncia de Fibonacci at´ o termo de ´ ue e ındice 2n − 1 (i.e., os n primeiros ´ ımpares). Temos n F2i−1 = F1 + F3 + F5 + · · · + F2n−1 = F2n . i=1 2

Subtraindo a segunda equa¸˜o da primeira obtemos ca (F1 + F2 + F3 + F4 + F5 · · · + F2n−1 + F2n ) − (F1 + F3 + F5 + · · · + F2n−1 ) = (F2n+2 − 1) − F2n que ´ igual a e n F2i = F2 + F4 + · · · + F2n = F2n+1 − 1 i=1 pois F2n+2 = F2n+1 + F2n . Analogamente ` anterior, esta propriedade pode ser tamb´m demonstrada pelo Princ´ a e ıpio da Indu¸˜o ca Matem´tica. Deixo-a a cargo do leitor. a A pr´xima propriedade a ser demonstrada refere-se ` limita¸˜o superior de todos os termos da seq¨ˆncia o a ca ue n 7 em fun¸˜o de n. A propriedade afirma que Fn < ca . 4 Demonstra¸˜o ca 2 A propriedade ´ v´lida para n = 1 e n = 2 pois F1 = 1 < 7 e F2 = 1 < 7 = 49 . e a 4 4 16 Utilizemos ent˜o o “Princ´ a ıpio da Indu¸ao Forte”. Supomos que a propriedade ´ verdadeira para n ∈ c˜ e 7 k e Fk−1 < {1, 2, 3, · · · , k − 1, k}. Neste caso, utilizaremos (assumamos que ´ verdade) que Fk < e 4 7 k−1 para concluir que 4 Fk+1 = Fk + Fk−1 < 7 4 k + 7 4 k−1 = Isto n˜o prova a propriedade. Mas, como a Fk+1 < 11 4 7 4 7 4 7 4 k−1 11 49 < = 4 16 k−1 < 7 4 + 7 4 7 4 2 k−1 = 7 4 k−1 7 +1 4 = 11 4 7 4 k−1 . 2 ent˜o a 7 4 k−1 = 7 4 k+1 , como quer´ ıamos demonstrar. Por fim, demonstremos a f´rmula geral da seq¨ˆncia de Fibonacci, conhecida por F´rmula de Binet, que o ue o ´ dada por e √ n √ n 1 1+ 5 1 1− 5 Fn = √ −√ . 2 2 5 5 Demonstra¸˜o ca Para n = 1 temos √ √ 1+ 5 1 1− 5 −√ = 2 2 5 √ √ 1+ 5 1− 5 1 √ − = √ 5 = 1 = F1 . 2 2 5 1 √ 5 1 √ 5 Logo a propriedade ´ verdadeira para n = 1. Supondo que a propriedade ´ tamb´m v´lida para n ∈ e e e a {1, 2, 3, · · · , k − 1, k} queremos mostrar que ´ v´lida tamb´m para n = k + 1. Sabemos que, por hip´tese, e a e o 3

√ √ k √ k √ k−1 k−1 1 1 1 1 que Fk = √5 1+2 5 − √5 1−2 5 e Fk−1 = √5 1+2 5 − √5 1−2 5 . Sabemos tamb´m, pela e defini¸˜o da seq¨ˆncia de Fibonacci que Fk+1 = Fk + Fk−1 para k ≥ 2. Ent˜o, ca ue a Fk+1 = Fk + Fk−1 Fk+1 Fk+1 1 =√ 5 √ 1+ 5 2 1 =√ 5 √ 1+ 5 2 Fk+1 k Fk+1 √ 1+ 5 2 1 =√ 5 k √ 1+ 5 2 Fk+1 √ 1− 5 2 1 −√ 5 √ 1− 5 2 1 −√ 5 1 =√ 5 k 1 =√ 5 k k √ 1+ 5 2 1 +√ 5 √ 1+ 5 2 1 +√ 5 k k−1 √ 1+ 5 2 −1 1 −√ 5 1 −√ 5 2 √ 1+ 1+ 5 1 −√ 5 √ 1− 5 2 k √ 1+ 5 2 1 −√ 5 √ 1− 5 2 k 1 −√ 5 √ 1− 5 2 √ 1− 5 2 √ 1− 5 2 k−1 k √ 1− 5 2 −1 k+1 k √ 1+ 5 2 k+1 1+ 2 √ 1− 5 √ 1− 5 2 Logo, pelo “Princ´ ıpio da Indu¸ao Matem´tica Forte”, a propriedade ´ v´lida para todo n ≥ 1. c˜ a e a √ 1+ 5 O n´mero irracional ϕ = u ´ conhecido como raz˜o aurea ou n´mero de ouro. Utilizando este e a ´ u 2 n´mero, podemos reescrever a F´rmula de Binet. u o Observe que √ −1 √ 2 1− 5 1+ 5 −1 √ = . (−ϕ) = − =− 2 2 1+ 5 Logo, Fn = ϕn − (−ϕ)−n √ . 5 4

Add a comment

Related presentations

Related pages

Seqüência de Fibonacci - Aspectos Matemáticos - Education

1. ¨ˆ SEQUENCIA DE FIBONACCI Aspectos matem´ticos a Rodrigo Thiago Passos Silva rodrigotpsilva@gmail.com A seq¨ˆncia de Fibonacci ´ uma seq¨ˆncia ...
Read more

Sequência de Fibonacci – Wikipédia, a enciclopédia livre

... a Sucessão de Fibonacci ... Em termos matemáticos, ... A seqüência de Fibonacci descreve perfeitamente a reprodução das abelhas.
Read more

Matematica Essencial: Alegria: Sequencias de Fibonacci ...

A sequência de Fibonacci ... Para detalhes matemáticos das Sequências de Fibonacci, ... Tais medidas são usadas em testes para avaliar aspectos de ...
Read more

Pitágoras encontra Fibonacci by Jackson Oliveira on Prezi

... temos a possibilidades de explorar alguns aspectos da ... Esta seqüência foi denominada de seqüência de Fibonacci ... levando os matemáticos e ...
Read more

Seqüência de Fibonacci - Documents

Seqüência de Fibonacci O matemático Leonardo Pisa, conhecido como Fibonacci, propôs no século XIII, a seqüência numérica abaixo: ...
Read more

Fibonacci e o Número de ouro: O que é? - ElliottBrasil

Fibonacci foi um dos grandes matemáticos da Idade ... Fibonacci percebeu que a seqüência ... o qual foi ministrado muito bem em todos os aspectos.
Read more

A Cruz e a Rosa: A matemática de Fibonacci e as Antigas ...

A seqüência numérica era conhecida por matemáticos ... o pacote Fibonacci: Seqüência de Fibonacci e ... Aspectos Divinos da Chama ...
Read more

Blog do Profº Andrios Bemfica: A fantástica sequência de ...

O que mais inspirou as gerações posteriores de matemáticos foi esse intrigante ... membros da seqüência de Fibonacci. ... Aspectos históricos e ...
Read more

Copy of Pitágoras encontra Fibonacci by Jackson Oliveira ...

possibilidades de aplicações no ensino da Matemática. Pitágoras encontra Fibonacci RESUMO Este trabalho pretende destacar a importância da ...
Read more