Rowanrobinson

50 %
50 %
Information about Rowanrobinson
Entertainment

Published on November 15, 2007

Author: Julie

Source: authorstream.com

Galaxy formation from infrared to submm:  Galaxy formation from infrared to submm Michael Rowan-Robinson Imperial College London 1. Extragalactic infrared and submillimetre surveys 2. Radiative transfer models for extragalactic infrared sources 3. Models for source-counts and background radiation, from submm to ultraviolet Extragalactic infrared and submillimetre surveys:  Extragalactic infrared and submillimetre surveys Michael Rowan-Robinson Imperial College London Dole et al 2006 most of the starlight ever generated in the universe is emitted at infrared wavelengths, ~ 50% is absorbed by dust and reemitted at far infrared and submillimetre wavelengths the infrared and submillimetre bands:  1 micron - 1 mm - a few terrestial windows the infrared and submillimetre bands Pre-IRAS, IRAS:  Pre-IRAS, IRAS Pre-IRAS: 1969: Caltech 2 Micron Survey (Neugebauer and Leighton) – circumstellar dust shells, BN object 1976: The AFGL Survey at 4.2, 11, 19.8 and 27.4 mm (Price and Walker) – cds, HII regions IRAS: 1984: IRAS all sky survey at 12, 20, 60, 100 mm - 30,000 infrared galaxies (measured redshifts of 12000 with S(60)>0.6 Jy - PSCz) - ir cirrus - ULIRGS, HLIRGS - AGN dust tori - ir dipole, large scale structure IRAS:  IRAS Horsehead Nebula IRAS all-sky survey:  IRAS all-sky survey Infrared galaxy populations:  Infrared galaxy populations with IRAS we were able to identify the main infrared galaxy populations - quiescent galaxies (ir cirrus) - starburst galaxies (prototype M82) - extreme starbursts (prototype A220) - AGN dust tori but the IRAS survey was not deep enough (z ~ 0.3) to study the cosmological evolution of these populations, though 60 mm source-counts showed that evolution is present, at a comparable rate to that seen in radio-galaxies and quasars an important insight was that as infrared luminosity increased, the proportion of interactions and mergers increased ISO:  ISO ISO, launched 1996, reached z~1, + spectroscopy ISO surveys:  ISO surveys CAM Deep Surveys Fadda et al, 2001, AA, astro-ph/011412 Franceschini et al, 2002, AA, astro-ph/0108292 Elbaz et al, 2002, AA 384, 848 ELAIS Survey at 6.7, 15, 90, 175 mm Oliver et al, 2000, MN 316, 749 Serjeant et al, 2000, MN 316, 768 Efstathiou et al, 2000, MN 319, 1169 Serjeant et al, 2001, MN 322, 262 Lari et al, 2001, MN 325, 1173 Gruppioni et al, 2002, MN 341, L1 Rowan-Robinson et al, 2004, MN 351, 1290 ISO HDF-N and HDF-S surveys Oliver et al, 2002, MN 332, 546 Mann et al, 2002, MN 332, 549 FIRBACK 175 mm survey Dole et al, 2001, AA 372, 264 ISO surveys:  ISO surveys * main result was very strong increase in star-formation rate in galaxies between z = 0 and 1 (factor ~10) (Rowan-Robinson et al 1997, Flores et al 1999), confirming the result from optical surveys (Lilley et al 1996, Madau et al 1996) and that the rate estimated from optical data without correction for extinction is severely underestimated. problems of screen model for extinction correction issue of consistency between estimates of star-formation rate from uv, Ha, radio, far infrared sfr = 2.2 x 10-10 L60 = 2.5x10-8 LHa = 4.5x10-10 L2800A Dust extinction in local galaxies:  Dust extinction in local galaxies <AV> ~ 0.3 in local galaxies (Rowan-Robinson, 2003, MN 344, 13) comparison of star-formation rate estimates:  comparison of star-formation rate estimates Daddi et al 2007 Slide13:  HDFN at 850 mm Hughes et al 1998 impact of JCMT SHADES blank field surveys at 850 mm showed that we were able to survey the whole universe to z = 5 with ultraluminous ir galaxies Submillimetre surveys:  Submillimetre surveys Hubble Deep Field North Hughes et al 1998 Hawaii surveys Barger et al 1998, 1999, Cowie et al 2002, Wang et al 2004 CUDSS survey Eales et al 1999, Webb et al 2003, Clements et al 2004, Ashby et al 2006 UK 8 mJy survey (200 sq arcmin) Scott et al 2001, Fox et al 2001, Ivison et al 2002, Almaini et al 2003 SHADES (0.5 sq deg) Mortier et al 2005, Coppin et al 2006, Ivison et al 2007, Aretxaga et al 2007 submillimetre associations and galaxy redshift distribution:  submillimetre associations and galaxy redshift distribution Chapman et al, 2005, ApJ 622, 772 poor spatial resolution of JCMT means that reliable optical or infrared associations can only be made if have millimetre interferometry or radio associations why don’t we see submm galaxies at z > 4 ? is this a selection effect ? Near-ir Surveys:  Near-ir Surveys 2MASS all-sky survey at J, H, K (to 15.8, 15.1, 14.3 mag.) – http://www.ipac.caltech.edu/2mass/ UKIDDS survey of 7500 sq deg in JHK (K=18.3) -http://www.ukidss.org/ FIR Surveys SPITZER surveys (GTO - various, FLS - 4 sq deg, SWIRE - 49 sq deg, GOODS - 0.1 sq deg, AEGIS - 1 sq deg, COSMOS - 1 sq deg) at 3.6, 4.5, 5.6, 8, 24, 70, 160 mm - http://ssc.spitzer.caltech.edu/ ASTRO-F all-sky survey in 6 bands at 9-180 mm - http://www.akari.org.uk 2MASS:  2MASS 2MASS provides a better picture of galaxy distribution at z<0.03 Layered SPITZER Surveys:  Layered SPITZER Surveys Wide–shallow FLS GTO-shallow SWIRE greatest volume 4 8.5 49 sq deg rare luminous objects large-scale structure Confusion-limited GTO-deep GOODS-IRAC maximum information 2.5 sq deg 300 sq arcmin on faintest resolved sources Ultra-deep GTO-ultra GOODS-24 mm confusion distribution 150 300 sq arcmin M51 Sombrero:  M51 Sombrero combined 3.6, 8 and 24 mm images (SINGS consortium) M82 N2207/IC2163 Stefan’s Quintet:  M82 N2207/IC2163 Stefan’s Quintet SPITZER SWIRE survey:  SPITZER SWIRE survey 49 sq deg in 6 areas, at 3.6, 4.5, 5.8, 8, 24, 70, 160 mm Slide22:  ELAIS N1: 9 sq. deg SWIRE 3.6 mm survey in ELAIS-N1 Photometric redshifts:  Photometric redshifts method based on fixed galaxy and AGN templates, two passes through data to help identify QSOs and AGN dust tori, and selected priors Rowan-Robinson et al 2007 Photometric redshifts:  Photometric redshifts SWIRE-VVDS sample (with VVDS team, PI LeFevre) VIRMOS-VLT Deep Survey spectra >1000 sources ~3% rms in (1+z) <1% outliers ~ IRAC 3.6 and 4.5 mm big help in reducing outliers z = 1 2 3 4 red: gals, blue QSOs Photometric redshifts:  Photometric redshifts All SWIRE Catalogue VVDS: 9 optical bands N1,N2: 5 optical bands Lockman: 3-4 optical bnds CDFS: 3 optical bands XMM-LSS: 5 optical bands z = 1 2 3 4 SWIRE Photometric Redshift Catalogue contains over 1 million redshifts, 10% have z >2, 4% have z > 3, 20% detected at 24 mm, 1% at 70 or 160 mm red: galaxies, blue QSOs rms, % outliers, as function of number of bands:  rms, % outliers, as function of number of bands Redshift distributions:  Redshift distributions >=3 bands from U-8mm left: Suburu XDS, R<27.5 below: ELAIS-N1, r<23.5: for optically blank sources use 3.6-8 mm for phot-z Lir/Lopt:  Lir/Lopt for galaxies with an ir excess, we fit ir templates (cirrus, M82, A220, AGN dust torus) and estimate Lir (reasonably accurate if have 70 mm detection) for cirrus galaxies, Lir/Lopt is a measure of optical depth of ism for star-forming galaxies, Lir/Lopt is the specific star formation rate Lir/Lopt for starbursts :  Lir/Lopt for starbursts star-forming ellipticals :  star-forming ellipticals * Lir/Lopt (specific star formation rate) versus Lopt (~ M•) for galaxies with elliptical galaxy template fits * includes objects like Arp 220, whose star formation is heavily obscured Black: cirrus Red: M82 starburst Green: A220 starburst ultraluminous cirrus gals(L), star-forming ellipticals(R) :  ultraluminous cirrus gals(L), star-forming ellipticals(R) AKARI:  AKARI Japanese mission, 68 cm cooled telescope, first all-sky far infrared survey since IRAS, 90 and 140 mm, sensitivity probably comparable to IRAS FSS, but much better spatial resolution, so in principle may be able to construct deeper all-sky sample than PSCz HERSCHEL:  HERSCHEL 3.6 m passively cooled telecope operating at 50-500 mm layered survey will be carried out by SPIRE and PACS teams in guaranteed time, widest area 70 sq deg in 9 areas PLANCK:  PLANCK PLANCK will carry out a shallow all-sky extragalactic point-source survey, which will detect many high-z very luminous submm galaxies Radiative transfer models for extragalactic infrared sources:  Radiative transfer models for extragalactic infrared sources radiative transfer models for ir sources cirrus models for local quiescent galaxies models for starburst, UKIRGs, HLIRGs applications to Spitzer galaxies, submm galaxies IRS spectra and their interpretation ingredients for models for seds of infrared sources:  ingredients for models for seds of infrared sources model for interstellar grains [ Mathis et al 1977, Draine and Lee 1984, Rowan-Robinson 1992, Desert et al 1990, Siebenmorgen and Krugel 1992, Dwek 1998] assumed density distribution for dust [r ~r-b, HII region physics (Yorke 1977, Efstathiou et al 2000)] dust geometry [ spherically symmetric, axisymmetric (Efstathiou and RR 1990, 1991, 1995, Pier and Krolik 1992, Granato et al 1994, 1997, Silva et al 1998), clumpy [Rowan-Robinson 1995, Hoenig et al 2006] radiative transfer code [Rowan-Robinson 1980, Efstathiou and RR 1990, Pier and Krolik 1992, Krugel and Siebenmorgen 1994, Granato et al 1997, Silva et al 1998, Popescu et al 2000, Hoenig et al 2006] Radiative transfer models for infrared sources:  Radiative transfer models for infrared sources spherically symmetric dust clouds - first accurate code 1980 (R-R, ApJS 234, 111) - circumstellar dust shells 1981-3 starbursts and ULIRGs (RRE, 1993, MN 263, 675; ERRS, 2000) cirrus galaxies (ERR, 2003) axially symmetric dust clouds - first accurate code 1990 (Efstathiou and R-R, MN 245, 275) - protostars 1991 - AGN dust tori 1995 the radiative transfer equation:  the radiative transfer equation The intensity of radiation In(r,q) satisfies the equation dIn/ds = - n(r) Cn,ext In + n(r) Cn,abs Bn [T(r)] + n(r) |4p Cn,sc (q’) In (q’) dw/4p where Cn,abs = pa2 Qn,abs , Cn,sc = pa2 Qn,sc z(q’) Cn,ext = Cn,abs + |4p Cn,sc (q’) dw/4p interstellar dust grains:  interstellar dust grains size 50 A - 0.1 mm (and larger ?) composition: amorphous C graphite amorphous silicates crystalline silicates SiC PAHs Brownlee particle discovery of PAHs:  discovery of PAHs Leger and Puget, 1984, AA 137, L5 IRAS - cirrus:  IRAS - cirrus south celestial pole Cirrus models for local galaxies:  Cirrus models for local galaxies assume optically thin ism, extinction AV (<1, 0.4-0.9) BC starburst models, age t*, exponential decay time t characterise galaxies by single mean intensity, y = bolometric intensity/solar neighbourhood intensity (~2-5) for local galaxies, t* = 0.25 Gyr, t = 5-11 Gyr (Efstathiou and Rowan-Robinson 2003, MN 343, 322) IRAS - star forming regions:  IRAS - star forming regions constellation Orion LMC IRAS - ultraluminous infrared galaxies:  IRAS - ultraluminous infrared galaxies Arp 220 Soifer et al, 1984, ApJ 283, L1: the remarkable infrared galaxy Arp 220 Slide45:  Eftstathiou, R-R, Seibenmorgen, 2000, MN 313, 734 embedded phase, t < 107 yrs expanding neutral shell, t = 107-108 years at 108 yrs, indistinguishable from cirrus Models for starburst galaxies Slide47:  galaxy sed model fits from GRASIL (Silva et al 1998) seds of ultraluminous infrared galaxies :  seds of ultraluminous infrared galaxies L:ISO R:SPITZER IRAS - AGN dust tori:  IRAS - AGN dust tori Miley et al, 1984, ApJ 278, L79: A 25 mm component in 3C390.3 Infrared templates:  Infrared templates (Rowan-Robinson 2001) Hyperluminous infrared galaxies:  Hyperluminous infrared galaxies Rowan-Robinson, 2000, MN 316, 885 starburst dominated IRAS F10214, z=2.3 galaxy Teplitz et al 2006 dust torus dominated:  dust torus dominated SPITZER-IRS: IRAS F00183-7111, hyperluminous infrared galaxy:  SPITZER-IRS: IRAS F00183-7111, hyperluminous infrared galaxy IRS spectrum of the hyperluminous ir galaxy F00183-7111 = IRAS P00182-7112 (Spoon et al 2004) z = 0.327 (narrow line object), lg Lsb = 13.25 Ltor v. Lsb:  Ltor v. Lsb Lsb v. Mgas:  Lsb v. Mgas broken lines show time-scale to convert gas mass into stars ULIRGs and HLIRGs have bursts on shorter time-scale, or need truncated IMF cirrus models for SCUBA galaxies:  cirrus models for SCUBA galaxies Efstathiou and R-R (2003) found that cirrus models, with slightly higher AV and y ( ~ 2-3 times higher than local quiescent galaxies) can also fit high-z galaxies from SCUBA blank-field surveys restrict analysis to SCUBA sources: (a) which have been confirmed by submm interferometry, or (b) sources from 8 mJy survey which have radio associations 70% of sources (16/23) successfully modeled by cirrus model. Note: models fit radio data also. assume t* = 0.25 Gyr, t = 6 Gyr SCUBA galaxies:  SCUBA galaxies z<0.12 galaxies with cirrus seds:  z<0.12 galaxies with cirrus seds Rowan-Robinson et al, 2005, AJ 129, 1183 sources with good ISO-ELAIS and SPITZER-SWIRE data templates z=0.1-0.9 galaxies:  z=0.1-0.9 galaxies fitted with cirrus or A220 template A220 model: AV = 200, t* = 26 Myr (Efstathiou and RR 2001) seds of z=0.1-2.2 galaxies/quasars:  fitted with cirrus, A220 starburst and AGN dust torus templates seds of z=0.1-2.2 galaxies/quasars SPITZER-IRS spectra of ELAIS sources:  SPITZER-IRS spectra of ELAIS sources IRS spectra for 70 ELAIS-N1 and -N2 sources with S15> 1mJy validate the template fits most are ULIRGs, with z =1-3 Filled circles: optical, ISO, SWIRE ( and MAMBO) data Solid curves: model seds Red curve: calibrated IRS data (Hernan-Caballero et al 2006) seds of submillimetre galaxies:  seds of submillimetre galaxies SHADES SXDS Clements et al 2007 what powers ultraluminous infrared galaxies ?:  what powers ultraluminous infrared galaxies ? Genzel et al, 1998, ApJ 498, 579 what powers ultraluminous infrared galaxies ?:  what powers ultraluminous infrared galaxies ? Spoon et al, 2007, astro-ph/0611918 Models for source counts and background spectrum, from submm to ultraviolet:  Models for source counts and background spectrum, from submm to ultraviolet ingredients for counts model at submm to uv wavelengths star-formation history, luminosity functions assumed seds, parameter estimation predicted counts and background intensity MODELS FOR COUNTS AND BACKGROUND FROM OPTICAL TO SUBMM :  MODELS FOR COUNTS AND BACKGROUND FROM OPTICAL TO SUBMM (Rowan-Robinson 2001, ApJ, 549, 745, 2007, in prep) * parameterized approach to star formation history * fitted to infrared and submm counts and background * 60 m luminosity function derived from PSCz data * ir and submm seds based on mixture of four components (cirrus, M82-starbust, AGN dust torus, Arp220), proportions depending on luminosity OTHER RECENT WORK:  OTHER RECENT WORK Franceschini et al, 2001, AA 378, 1 Gispert et al, 2000, astro-ph/005554 Xu et al, 2001, ApJ 562, 179 Takeuchi et al, 2001, PASJ, astro-ph/009460 Pearson et al , 2001, MN 325, 1511 Elbaz et al, 2002, AA 384, 848 Lagache et al, 2004, ApJS 154, 112 Gruppioni et al, 2005, ApJ 318, 9 Lagache, Puget, Dole, 2005, ARAA 43, 727 PARAMETERIZED MODEL FOR STAR FORMATION HISTORY:  PARAMETERIZED MODEL FOR STAR FORMATION HISTORY * assumed star formation history: sfr = *(t)/ *(to) = exp Q{1 - t/to} . (t/to) P meaning of parameters: t0/Q =sf (cf Bruzual,Charlot 1993) peak sfr when t/to = P/Q, or t = P sf (essentially the Bruzual and Charlot models with an additional parameter to tune the epoch of peak star formation rate) * assume 60 µm luminosity function of the form (L) = C* (L/ L* )1- exp{-0.5[log10(1+L/L*)/]2} (Saunders et al 1990) * assume luminosity evolution with L*(t)/L*(to) = *(t)/ *(to) * for each P,Q, parameters L*(to) and  are solved for from PSCz data (15000 IRAS galaxies with known z, S(60)≥ 0.6 Jy) parameterized star-formation history:  parameterized star-formation history sfr = *(t)/ *(to) = exp Q{1 - t/to} . (t/to) P meaning of parameters: t0/Q =sf peak sfr when t/to = P/Q, or t = P sf assumed seds, fit to counts, predictions:  assumed seds, fit to counts, predictions assumed spectral energy distribution, to convert luminosity function to other wavelengths, is mixture of cirrus, M82-starburst, AGN dust torus, Arp220-starburst components (radiative transfer models from Efstathiou et al 2000, Rowan-Robinson 1995), with proportion varying with 60 µm luminosity, to match 12-25-60-100-850 colour-colour and colour-luminosity diagrams * fit to observed counts at 60, 850 µm, and background intensity at 140, 350, 750 µm to find best (least chi2) values of P,Q: Ωo  P Q 0.3 0.7 3.0 9.0 best-fitting models then used to predict counts and background spectrum at 0.1 - 1250 mm Infrared templates:  Infrared templates colour-colour, colour-luminosity:  colour-colour, colour-luminosity (Rowan-Robinson 2001) Luminosity function at 850 mm:  Luminosity function at 850 mm Luminosity function at 60 mm:  Luminosity function at 60 mm Luminosity function at 12 mm:  Luminosity function at 12 mm Luminosity function at 0.44 mm:  Luminosity function at 0.44 mm Counts at 15 and 850 mm:  Counts at 15 and 850 mm Counts at 90 and 175 mm:  Counts at 90 and 175 mm Counts at 0.44 and 1.6 mm:  Counts at 0.44 and 1.6 mm (King and RR 2002: improved fits using some density evolution) Redshift distributions:  Redshift distributions Star-formation history:  Star-formation history (Rowan-Robinson 2003b) differential counts at 24 mm:  differential counts at 24 mm 24 mm differential counts (Shupe et al, 2007, Papovich et al 2004) new model for 24 mm counts:  new model for 24 mm counts 24 mm differential counts (Shupe et al, 2007, Papovich et al 2004) new model for ir counts (developed from RR 2001 models): independent evolution for each component, evolution has to flatten off at z < 0.5 M82 cirrus dust tori SHADES counts at 850 mm:  SHADES counts at 850 mm Coppins et al, 2007, astro-ph/0609039 differential counts at 70-850 mm:  differential counts at 70-850 mm new SWIRE 70, 160 and SHADES 850 mm differential counts (Afonso-Luis et al, 2007, in prep, Coppins et al 2007) contribution of different fir luminosity ranges to star-formation rate:  contribution of different fir luminosity ranges to star-formation rate blue: lg Lfirr/Lo < 11 orange: 11 < lg Lfirr/Lo < 12 red: 12 < lg Lfirr/Lo green: total LeFloch et al, 2005, ApJ Reddy et al 2007 star-formation history to z = 6:  star-formation history to z = 6 Thompson et al 2006 Reddy et al 2007 Frank Low: 1968: the far infrared background:  Frank Low: 1968: the far infrared background the far ir and submm background:  the far ir and submm background Hauser and Dwek, 2001, ARAA 39, 249 the interpretation of the extragalactic background:  the interpretation of the extragalactic background the integrated extragalactic background spectrum is a weighted integral of the star-formation history In = c |oto f(t) LnZ (t) dt weighting is by K-correction LnZ /Ln so submm weighted to higher redshift than far and mid ir submm background can give strong limit on high z sfr Models for infrared background:  Models for infrared background Rowan-Robinson 2001 Slide92:  far ir and submm background from stacking analyses Models for infrared background:  Models for infrared background Rowan-Robinson 2007 now have good bg data at 24, 70, 160 mm models, modified to fit 24 mm counts, now also give better fit to background spectrum History of the universe:  History of the universe the future:  the future Darwin TPF ALMA Herschel

Add a comment

Related presentations

Related pages

Michael Rowan-Robinson – Wikipedia

Michael Geoffrey Rowan-Robinson (* 9. Juli 1942) ist ein britischer Astronom und Astrophysiker (Infrarotastronomie). Rowan-Robinson studierte am Pembroke ...
Read more

Rowan Robinson (@RowanRobinson) | Twitter

The latest Tweets from Rowan Robinson (@RowanRobinson): "check out this article! I made $290 today! http://t.co/4mtjPcO"
Read more

About - Rowan Robinson

Rowan Robinson is a folk singer guitarist based in the North East with a passion for traditional music. Using an expressive and percussive guitar technique ...
Read more

Michael Rowan-Robinson | Fundstellen im Internet ...

Fundstellen zu "Michael Rowan-Robinson" im Internet, an Universitäten und in der Literatur... cyclopaedia.net
Read more

News - Rowan Robinson

The new website is up and running, this being the first official post! Well, what a hectic few months its been… Firstly, the summer (…feels a long time ...
Read more

Cosmology, Rowan-Robinson - Scribd - Read Unlimited Books

Cosmology, Rowan-Robinson - Free ebook download as Word Doc (.doc / .docx), PDF File (.pdf), Text file (.txt) or read book online for free.
Read more

Will Rowan-Robinson | LinkedIn

View Will Rowan-Robinson's (Australia) professional profile on LinkedIn. LinkedIn is the world's largest business network, helping professionals like Will ...
Read more

Countryside Law in Scotland: Amazon.de: Jeremy Rowan ...

Countryside Law in Scotland: Amazon.de: Jeremy Rowan-Robinson, Donna W.McKenzie Skene: Fremdsprachige Bücher
Read more

Rowan Robinson | Facebook

Rowan Robinson is on Facebook. Join Facebook to connect with Rowan Robinson and others you may know. Facebook gives people the power to share and makes...
Read more