Reference from Constructive View

50 %
50 %
Information about Reference from Constructive View
Others-Misc

Published on November 10, 2008

Author: aSGuest2903

Source: authorstream.com

Reference from a constructive point of view : 7/12/01 1 Reference from a constructive point of view Pascal Boldini Université Paris IV CAMS-EHESS The computational notions of meaning and reference : 7/12/01 2 The computational notions of meaning and reference 2 + 3 : N 2+3 = 5 : N SS0 + SSS0 : N S(SS0 + SS0) : N SS(SS0 + S0) : N SSS(SS0 + 0) : N SSS(SS0) : N SSSSS0 : N Σ - types : 7/12/01 3 Σ - types Introduction a : A b : B(a) ————————— (a,b) : (Σx:A)B(x) Elimination c : (Σx:A)B(x) ——————————— p(c) : A q(c) : B(p(c)) Equality c = (p(c),q(c)) : (Σx:A)B(x) DRT / Type Theory 1 : 7/12/01 4 DRT / Type Theory 1 A man whistles. A dog follows him. A man whistles u: (Σx:Man)whistles(x) p(u) : Man q(u) : whistles(p(u)) A dog follows him v: (Σx: Dog)follows(x,p(u)) p(v) : Dog q(v) : follows(p(v),p(u)) Σ-intro (u,v) : (Σy:(Σx:Man)whistles(x))((Σx:Dog)follows(x,p(y))) DRT / Type Theory 2 : 7/12/01 5 DRT / Type Theory 2 If a farmer owns a donkey, he beats it. If a farmer owns a donkey [u : (Σx:Farmer)(Σy:Donkey)owns(x,y)] p(u) : Farmer q(u) : (Σy:Donkey)owns(p(u),y) p(q(u)) : Donkey q(q(u)) : owns(p(u),p(q(u))) He beats it v : beats(p(u),p(q(u))) Σ-intro (u,v) : (Πz: (Σx:Farmer)(Σy:Donkey)owns(x,y))beats(p(z),p(q(z))) References : 7/12/01 6 References G. Sundholm, ``Proof theory and meaning'', Gabbay, D. and Guenthner, F.(eds.), Handbook of Philosophical Logic, Vol. III, D. Reidel, 1986. A.Ranta, Type-theoretical grammar, Oxford, Clarendon, 1994. R. Ahn, Agents, Objects and Events, Technical University, Eindhoven, 2000. Reference to events : 7/12/01 7 Reference to events John stole the book, I saw it. u : stole(John, the_book) v : saw(I,u) (u,v) : (Σx:stole(John, the_book))saw(I,x) Propositions as sets 1 : 7/12/01 8 Propositions as sets 1 : Man this : Man Paul : Man : Man Judgements reference meaning meaning meaning  = this= Paul: Man Propositions as sets 2 : 7/12/01 9 Propositions as sets 2 : it rains  : it rains  : it rains : it rains Judgements reference meaning meaning meaning = Rain : Set  =  =  : it rains Interface : 7/12/01 10 Interface {Semiotic system} Judgements a : A signification (public) Reference α : A (ideal) sense (private) No entity without a type Definite descriptions – Proper Nouns Frege : 7/12/01 11 Definite descriptions – Proper Nouns Frege Victor Hugo the author of Les Misérables a : Person Well-known difficulties some expressions do not refer: the king of France  identity of reference is tautological: the morning star is the evening star oblique contexts John believes that the author of Les Misérables is Irish    « Generally an expression denotes its reference, but within oblique contexts it denotes its meaning. » Definite descriptions – Proper Nouns Russell : 7/12/01 12 Definite descriptions – Proper Nouns Russell Victor Hugo the author of Les Misérables a : Person | | | | x(wrote(x,Les Misérables)  y(wrote(y,Les Misérables)  y=x)) Explains : definite descriptions without reference the content of referential identity Problem : The author of Les Misérables is a genious, but surely not the author of Hernani! Definite descriptions – Proper Nouns Kripke : 7/12/01 13 Definite descriptions – Proper Nouns Kripke If Victor Hugo = the author of Les Misérables, the a priori (analytic) truth wrote(Victor Hugo, Les Misérables) is a necessary truth. But it makes sense to say: Victor Hugo might not have written Les Misérables. The proper name is a rigid designator « the reference of a proper named is not characterized by a definite description, nor by any bunch of properties. » Definite descriptions The constructive solution : 7/12/01 14 Definite descriptions The constructive solution the author of Les Misérables : (Σx:Person)write(x,Les Misérables) (a,b) such that a : Person, b : write(a,Les Misérables) the author of Hernani : (Σx:Person)write(x,Hernani) (a,b’) such that a : Person, b’ : write(a,Hernani) We form without contradiction: genious(a,b)   genious(a,b’) : Prop Definite descriptions The constructive solution : 7/12/01 15 Definite descriptions The constructive solution {Semiotic system} the biggest natural number : (Σx:N)(Πy:N)(yx)  The type is a specification for the method of access to the reference. Individuals as …. Napoléon aware of the danger concentrated his troops on the left side (Napoléon,b) with b : aware(the_danger, Napoléon) Definite descriptions without reference: Proper nouns the constructive solution : 7/12/01 16 Proper nouns the constructive solution Knowledge by acquaintance: Paul : Person Knowledge by description : Victor Hugo : (Σx:Person)victor_hugo(x) Victor Hugo=(p(Victor Hugo),q(Victor Hugo)) There is no coreference for proper nouns brave(Bonaparte)   brave(Napoléon) : Prop There are no oblique contexts John believes that the author of Les Misérables is Irish Assumptions required in the belief context: p(Victor Hugo)=p(author of Les Misérables) : Person homogeneity of the predicate to be Irish on the type Person and its sub-types. Contexts and their extensions : 7/12/01 17 Contexts and their extensions Г=[ x1:(Σx:Donkey)owns(Paul,x), x2:beats(Paul,p(x1))] a(x1,x2) : cruel(x1,x2,Paul) Г0=[ x1:(Σx:Donkey)owns(Paul,x), x2:beats(Paul,p(x1))] Г1=[ y1:Donkey, y2: owns(Paul,y1), y3:beats(Paul,y1)] f(y1,y2,y3)=((y1,y2),y3): Г0 a(x1,x2) : cruel(x1,x2,Paul) a((y1,y2),y3) : cruel((y1,y2),y3,Paul) lifting Time and reference : 7/12/01 18 Time and reference John met his wife in 1968. [u : Г1948] [x0 : Г0] f a : Woman b(u) : meet(u,John,a) a : Woman b(f(x0)) : meet(f(x0),John,a) lifting his_wife(x0) : (Σx:Woman)married(x0,John,x) p(his_wife (x0))=a : Woman b(f(x0)) : meet(f(x0),John, p(his_wife(x0))) Counter-factuals : 7/12/01 19 Counter-factuals [u : ] [x0 : 0] [v : ] f g a : Person a : Person Victor_Hugo(x0) : (x:Person)victor_hugo(x0,x) p(Victor_Hugo(x0)) = a : Person b(v) : write(a, Les Misérables) b(v) : write(p(Victor_Hugo(x0)), Les Misérables) v.b(v) : (v:)write(p(Victor_Hugo(x0)), Les Misérables) Victor Hugo might not have written Les Misérables. Mental spaces (G. Fauconnier) : 7/12/01 20 Mental spaces (G. Fauconnier) [u : ] [x0 : 0] [v : Luc] f g expected world In Luc’s painting, the blue eyed girl has green eyes. a : Girl a : Girl the_beg(x0) : (x:Girl)blue_eyed(x0,x) p(the_beg(x0)) = a : Person b(v) : green-eyed(v,a) b(v) : green-eyed(v, p(the_beg(x0))) v.b(v) : (v:Luc) green-eyed(v, p(the_beg(x0))) Dependant predicates : 7/12/01 21 Dependant predicates Marlon Brando dies at the end of Apocalypse Now. [u : ] [x0 : 0] [v : Apocalypse] f g a : Person a : Person[Apocalypse, 0] M_B(x0):(x:Person)m_b(x0,x) p(M_B(x0))=a:Person dies(v,a) dies(v, p(M_B(x0))) (v : Apocalypse) dies(v,p(M_B(x0))) Kurtz(v):(x:Person)kurtz(v,x) p(Kurtz(v))=a:Person dies(v,Kurtz) (v : Apocalypse) dies(v,Kurtz) Generalized modus ponens (G. Fauconnier) : 7/12/01 22 Generalized modus ponens (G. Fauconnier) When he is a spy, all the beautiful women fall in love with Sean Connery. In Russia With Love, Sean Connery is a spy ——————————————————— In Russia With Love, all the beautiful women fall in love with Sean Connery. Generalized modus ponens : 7/12/01 23 Generalized modus ponens [u : ] [x0 : 0] f g [v : ] [w : RWL] h a : Person a : Person[, 0] S_C(x0) : (x:Person)s_c(x0,x) p(S_C(x0)) = a: Person b(v) : spy(a)(x:Woman)love(x,a) c(w) : spy(a) b(f(w))) : spy(a)(x:Woman)love(x,a) b(f(w))) c(w) : (x:Woman)love(x,a) b(f(w))) c(w) : (x:Woman)love(x, p(S_C(x0))) w. b(f(w))) c(w) : (w : RWL) (x:Woman)love(x, p(S_C(x0)))

Add a comment

Related presentations

Related pages

A Constructive View of Continuity Principles

Introduction BD-N The Fan Theorem References A Constructive View of Continuity Principles Robert S. Lubarsky Florida Atlantic University joint work with ...
Read more

Reference:Constructive Solid Geometry - POV-Wiki

... you can also combine multiple simple shapes into complex shapes using Constructive Solid Geometry ... Reference:Constructive_Solid_Geometry ... View ...
Read more

Constructivism (mathematics) - Wikipedia, the free ...

Constructive mathematics. Much constructive mathematics uses intuitionistic logic, which is essentially classical logic without the law of the excluded middle.
Read more

Constructive - Wikipedia, the free encyclopedia

Although the general English usage of the adjective constructive is "helping to develop or improve something; helpful to someone, instead of upsetting and ...
Read more

What are examples of constructive and ... - reference.com

World View; www.reference.com. ... Silt and soil deposition, as well as volcanic lava flows, are examples of constructive forces. Know More.
Read more

Constructive | Define Constructive at Dictionary.com

Constructive definition, constructing or tending to construct; helping to improve; promoting further development or advancement (opposed to destructive ...
Read more

Constructive - Definition for English-Language Learners ...

Definition of constructive written for English Language Learners from the Merriam-Webster Learner's Dictionary with audio pronunciations, usage examples ...
Read more

Constructive - definition of constructive by The Free ...

Define constructive. constructive synonyms, ... View in context. ... geography, and other reference data is for informational purposes only.
Read more

Constructively - definition of constructively by The Free ...

constructively - in a constructive manner; ... View in context. ... geography, and other reference data is for informational purposes only.
Read more

Constructive Mathematics (Stanford Encyclopedia of Philosophy)

Constructive mathematics is distinguished from its traditional counterpart, classical mathematics, by the strict interpretation of the phrase “there ...
Read more