Programación con rutas 4º Secundaria Matematica

50 %
50 %
Information about Programación con rutas 4º Secundaria Matematica
Education

Published on March 15, 2014

Author: hugoriveraprieto

Source: slideshare.net

Description

Programación Anual

PROGRAMAS DE ESPECIALIZACIÓN DOCENTE 2012 – 2014 “Cambiemos la Educación, cambiemos todos” PROGRAMACIÓN CURRICULAR ANUAL DE MATEMÁTICA 2014 I DATOS INFORMATIVOS: 1.1. UGEL : Santa 1.2. Institución Educativa : Santa María Reina 1.3. Lugar : Chimbote 1.4. Nivel educativo : Secundaria 1.5. Ciclo : VII 1.6. Grado : Cuarto 1.7. Sección : A-B-C-D 1.8. Horas semanales : 06 1.9. Director : Napoleón Godo Olivera 1.10. Profesor : Hugo Tomás RIVERA PRIETO II FUNDAMENTACIÓN: 2.1LEGAL:  Constitución Política del Perú  Ley N° 28044. Ley General de Educación  Ley N° 29944. Ley la Reforma Magisterial.  Ley N° 28988, Ley que declara a la Educación Básica Regular como servicio público esencial.  R.M. N° 0234 – 2005 – ED. Aprueba Directiva N° 004 – VMGP – 2005. Evaluación de los Aprendizajes de los Estudiantes en la Educación Básica Regular.  D.S Nº 009-2005-ED “Reglamento de la Gestión del Sistema Educativo”,  R. M. N° 0622-2013-ED. Normas y Orientaciones para el Desarrollo del Año Escolar 2014 en la Educación Básica  R. M. N° 0547-2012-ED. Lineamientos Marco de Buen Desempeño Docente para Docentes de Educación Básica Regular.  R.D N° …..Proyecto Educativo Institucional.  R.D N°……Plan Anual de Mejora de la IE. 2.2 TÈCNICA: El presente programa del Cuarto grado de educación secundaria asume el desafío frente a los vertiginosos cambios que se presenta en el actual sistema Nacional de desarrollo curricular nacional. El área de Matemática, es una de las primeras en ser integradas al Nuevo Sistema Nacional de Desarrollo Curricular. Esto implica realizar una serie de cambios de forma y perspectiva a fin de llevar a cabo una implementación coherente a la naturaleza de la nueva propuesta curricular. Dentro de su nueva matriz de competencias y capacidades el Área de matemática presenta 4 dominios, 4 competencias y 24 capacidades. Cada competencia involucra un conjunto de capacidades y a su vez estas se evalúan con sus respectivos indicadores de acuerdo al ciclo o grado.

El Nuevo Sistema Nacional de Desarrollo Curricular demanda también la evaluación de las competencias con el propósito de monitorear periódicamente su desarrollo. Este es un proceso de evaluación distinto al de evaluación de las capacidades, el cual se lleva a cabo haciendo uso de los indicadores de desempeño de las competencias correspondientes. El enfoque del área es el de Resolución de problemas que es la actividad central de la matemática para establecer relaciones de funcionalidad matemática con la realidad cotidiana. Nuestro compromiso y responsabilidad como maestro de este siglo es lograr que los estudiantes desarrollen las competencias y capacidades que requieren usando los conocimientos que tiene el estudiante y los recursos de su entorno para garantizar su inclusión social, contribuir con el crecimiento económico del país y la construcción de una sociedad democrática, sin desventajas para desenvolverse en un mundo globalizado y cambiante. III. TEMAS TRANSVERSALES: BIMESTRE TEMAS TRANSVERSALES I Educación para la convivencia la paz y la ciudadanía II Conciencia ambiental y calidad de vida III Educación en valores y formación ética IV Educación en valores y formación ética IV. APRENDIZAJE FUNDAMENTAL(COMPETENCIA GENERAL O MACROHABILIDAD) El logro de los Aprendizajes Fundamentales supone un cambio radical en la relación con la información. En general, la educación ha propiciado siempre una relación pasiva y acrítica con la información, induciendo básicamente a recibirla, registrarla, recordarla y reproducirla, pues su almacenamiento y repetición eran señal de aprendizaje. Ahora los estudiantes necesitan aprender a relacionarse de una manera activa y reflexiva con la información, lo que les demanda más bien la capacidad de buscarla en distintas fuentes, incluso de producirla, de cotejarla con otra, de discutirla críticamente. Ahora la mejor señal de aprendizaje será su capacidad de utilizarla para resolver una situación determinada Plantea y resuelve problemas usando estrategias y procedimientos matemáticos. Todos los estudiantes plantean y resuelven diversas situaciones problemáticas de contexto real, matemático y/o científico que implican la construcción y el uso de saberes matemáticos, empleando diversas estrategias, argumentando y valorando sus procedimientos y resultados. V. NIVEL DE APRENDIZAJE El MAPA DE PROGRESO está dividido en niveles. Los niveles indican lo que se espera que un estudiante haya aprendido al finalizar cada ciclo de la Educación Básica Regular. Los niveles muestran estos aprendizajes de manera sintética y empleando un lenguaje sencillo, con el fin de que todos puedan comprenderlos. NIVEL EDAD CICLO GRADO DE LA EDUCACIÓN BÁSICA NIVEL 6 16 años Fin del SÉTIMO ciclo 3º, 4º Y 5º de secundaria Al terminar el QUINTO grado de secundaria

VI. MATRIZ DE DOMINIO COMPETENCIAS Y CAPACIDADES P DOMINIOS COMPETENCIAS CAPACIDADES NUMEROS Y OPERACIONES CANTIDADES Plantea y resuelve situaciones problemáticas de cantidades que implican la construcción y el uso de números y operaciones, empleando diversas representaciones y estrategias de resolución que permitan obtener soluciones pertinentes al contexto  Matematiza situaciones problemáticas de cantidades discretas o continuas, en relación a los diversos usos y significados del número y las operaciones.  Representa de diversas formas las cantidades discretas o continuas en situaciones relacionadas al uso y significado del número o las operaciones.  Comunica en forma oral y escrita ideas, procedimientos y resultados, en situaciones problemáticas que involucran cantidades discretas y continuas.  Elabora y usa estrategias para resolver situaciones problemáticas que involucran cantidades discretas y continuas empleando recursos propios y del entorno.  Usa el lenguaje simbólico, técnico y formal para comprender y plantear relaciones con números y operaciones en situaciones problemáticas con cantidades, a partir de la socialización.  Argumenta la pertinencia de los procesos, procedimientos, resultados o soluciones con pertinencia al emplear los números y las operaciones en la resolución de situaciones problemáticas de cantidades. CAMBIO Y RELACIONES REGULARIDAD Y CAMBIO Plantea y resuelve situaciones problemáticas de regularidades, equivalencias y cambio que implican desarrollar patrones, establecer relaciones, proponer y usar modelos, empleando diversas formas de representación y lenguaje simbólico, comprobando y argumentando conjeturas.  Matematiza situaciones problemáticas de regularidad, equivalencia y cambio identificando relaciones cuantitativas y cualitativas.  Representa de diversas formas relaciones cuantitativas y cualitativas en situaciones de regularidad, equivalencia y cambio.  Comunica en forma oral y escrita ideas, procedimientos y resultados, a partir de situaciones problemáticas de regularidad, equivalencia y cambio.  Elabora y usa estrategias para resolver situaciones problemáticas de regularidad, equivalencia y cambio empleando recursos propios o del entorno.  Usa el lenguaje simbólico, técnico y formal para comprender y plantear relaciones cualitativas y cuantitativas en situaciones de regularidad, equivalencia y cambio, a partir de la socialización.  Argumenta la pertinencia de los procesos y soluciones al emplear relaciones y modelos en la resolución de situaciones problemáticas de regularidad, equivalencia y cambio.

GEOMETRÍA FORMAS, MOVIMIENTO Plantea y resuelve situaciones problemáticas de formas, movimientos y localización de cuerpos que implican su construcción y uso en el plano y en el espacio, empleando relaciones geométricas, atributos medibles, así como la visualización, la representación y herramientas diversas, explicando la concordancia con el mundo físico.  Matematiza situaciones problemáticas de formas, movimientos y localización de cuerpos en el espacio identificando atributos medibles y relaciones geométricas.  Representa de diversas maneras situaciones de formas, movimientos y localización de cuerpos utilizando relaciones geométricas y atributos medibles en el plano y en el espacio.  Comunica en forma oral, escrita o artística, ideas, procedimientos y resultados a partir de situaciones problemáticas de formas, movimientos y localización de cuerpos con significatividad.  Elabora y usa estrategias para resolver situaciones problemáticas de formas, movimientos y localización de cuerpos, utilizando recursos propios o del entorno.  Usa el lenguaje simbólico, técnico y formal para comprender y plantear relaciones entre nociones, elementos, propiedades y conceptos geométricos en situaciones de forma, movimiento y localización de cuerpos, a partir de la socialización.  Argumenta la pertinencia de los procesos, procedimientos, resultados, soluciones y sus conjeturas en la resolución de situaciones problemáticas de forma, movimiento y localización de cuerpos. ESTADÍSTICA Y PROBABILIDAD INCERTIDUMBRE Plantea y resuelve situaciones problemáticas de incertidumbre que implican la producción, evaluación, uso de información y toma de decisiones adecuadas, empleando la recopilación, procesamiento y análisis de datos, así como el uso de técnicas e instrumentos pertinentes.  Matematiza situaciones de incertidumbre identificando datos relevantes y sucesos en la recopilación, el procesamiento y el análisis.  Representa de diversas formas un conjunto de datos en situaciones de incertidumbre para organizar y presentar la información.  Comunica en forma oral y escrita la información y los procesos de recopilación, procesamiento y análisis de datos en situaciones de incertidumbre, utilizando variados recursos.  Elabora y usa estrategias para resolver situaciones problemáticas de incertidumbre empleando métodos y procedimientos apropiados, así como el uso de recursos propios o del entorno.  Usa el lenguaje simbólico, técnico y formal en situaciones de incertidumbre para interpretar, procesar, analizar la información y tomar decisiones pertinentes a partir de la socialización.  Argumenta la pertinencia de los procedimientos y la información producida, planteando y evaluando conclusiones y predicciones basadas en datos procesados en situaciones problemáticas de incertidumbre.

VII. MATRIZ DE INDICADORES DE EVALUACIÓN NÚMERO Y OPERACIONES Construcción del significado y uso de números reales en situaciones problemáticas con cantidades continuas, grandes y pequeñas • Propone situaciones de medida con múltiplos y submúltiplos de unidades de magnitudes para expresar números reales mediante notación científica. • Ordena datos en esquemas de organización que expresan números reales. • Utiliza las formas gráficas y simbólicas de intervalos para representar información. • Expresa situaciones de medida de temperaturas, índices financieros, tallas, etc., que implican el uso de los números reales mediante intervalos en su forma gráfica y simbólica. • Aplica variadas estrategias con números reales, intervalos y proporciones de hasta dos magnitudes e interés compuesto. • Utiliza intervalos y expresiones de notación científica con números reales. • Explica la utilidad de la notación científica y los intervalos. • Explica las condiciones de densidad de los números reales expresados en la recta numérica. • Explica las distinciones entre los números racionales e irracionales. Construcción del significado y uso de las operaciones con números reales en situaciones problemáticas con cantidades continuas, grandes y pequeñas • Describe procedimientos deductivos al resolver situaciones de interés compuesto hasta con tres magnitudes en procesos de situaciones comerciales, financieras y otras. • Describe situaciones científicas con cantidades muy grandes y muy pequeñas (por ejemplo, en la nanotecnología o las distancias estelares). • Usa las diferentes representaciones gráficas o simbólicas para representar y operar con intervalos. • Explica estrategias de resolución de problemas simulados y reales de varias etapas aplicando las propiedades de las operaciones aditivas multiplicativas y potencias con números reales. • Elabora estrategias para encontrar números Reales entre dos números dados. • Formula estrategias de estimación de medidas para ordenar números reales en la recta real. • Aplica variadas estrategias heurísticas (ensayo y error, hacer una lista sistemática, empezar por el final, establecer subtemas, suponer el problema resuelto) para resolver situaciones laborales, financieras, etc, sobre proporciones de hasta tres magnitudes e interés compuesto. • Aplica operaciones y proporciones con números reales para resolver situaciones financieras, comerciales y otras sobre porcentajes e interés compuesto. • Usa los símbolos de la representación de intervalos sobre la recta para resolver operaciones de unión, intersección, diferencia y complemento de números reales. CAMBIO Y RELACIONES Construcción del significado y uso de sucesiones crecientes y decrecientes en situaciones problemáticas de regularidad • Elabora modelos usando la progresión geométrica a partir de regularidades reales o simuladas. • Ordena datos en esquemas para organizar regularidades mediante progresiones geométricas. • Interviene y opina presentando ejemplos y contraejemplos sobre los resultados de un modelo de progresión geométrica. • Elabora estrategias heurísticas para resolver problemas que involucran progresiones geométricas. • Utiliza expresiones algebraicas para generalizar progresiones geométricas. • Verifica la regla de formación y la suma de los términos de progresiones geométricas con números reales. Construcción del significado y uso de inecuaciones cuadráticas y sistema de ecuaciones lineales con tres variables en situaciones problemáticas de equivalencia • Plantea modelos de situaciones reales o simuladas mediante inecuaciones cuadráticas con coeficientes racionales. • Modela situaciones de contextos reales o simulados mediante desigualdades cuadráticas con coeficientes reales. • Ordena datos en esquemas para establecer equivalencias mediante inecuaciones cuadráticas. • Ubica en la recta real el conjunto solución de inecuaciones cuadráticas. • Describe en forma oral o escrita las estrategias empleadas en la resolución de problemas que involucran inecuaciones cuadráticas y sistema de ecuaciones lineales con dos y tres incógnitas • Elabora estrategias heurísticas para resolver problemas que involucran inecuaciones cuadráticas y sistema de ecuaciones lineales con tres variables. • Emplea métodos de resolución (reducción, sustitución, gráfico, igualación) para resolver problemas que involucran sistema de ecuaciones lineales con tres variables. • Usa el método de intervalos y de puntos críticos para encontrar las soluciones de inecuaciones

cuadráticas. • Utiliza gráficos de rectas en el sistema de coordenadas cartesianas para resolver problemas que implican sistema de ecuaciones lineales de tres variables. • Justifica mediante procedimientos gráficos o algebraicos que la inecuación cuadrática de la forma ax² + bx + c < 0, o sus expresiones equivalentes, modela la situación problemática dada. Construcción del significado y uso de funciones cuadráticas en situaciones problemáticas de cambio • Diseña modelos de situaciones de cambio mediante funciones cuadráticas con coeficientes naturales y enteros. • Ordena datos en esquemas para organizar situaciones de cambio mediante funciones cuadráticas. • Describe procedimientos deductivos en la resolución de problemas que implican usar funciones cuadráticas • Grafica en el plano cartesiano diversos valores a partir de la organización de datos para resolver problemas de cambio que impliquen funciones cuadráticas. • Elabora estrategias heurísticas para resolver problemas que involucran funciones cuadráticas • Utiliza la gráfica de la función cuadrática para determinar los valores máximos y mínimos y los puntos de intersección con los ejes coordenados para determinar la solución de la ecuación cuadrática implicada en el problema. • Justifica mediante procedimientos gráficos o algebraicos que la función cuadrática de la forma f(x) = ax² + bx + c, o sus expresiones equivalentes, modela la situación problemática dada GEOMETRÍA ESTADÍSTICA Y PROBABILIDAD

VIII. ESTANDARES DE APRENDIZAJE DOMINIOS ESTANDAR DE APRENDIZAJE INDICADORES DE DESEMPEÑO Números y Operaciones Interpreta el número irracional como un decimal infinito y sin período. Argumenta por qué los números racionales pueden expresarse como el cociente de dos enteros. Interpreta y representa cantidades y magnitudes mediante la notación científica. Registra medidas en magnitudes de masa, tiempo y temperatura según distintos niveles de exactitud requeridos, y distingue cuándo es apropiado realizar una medición estimada o una exacta. Resuelve y formula situaciones problemáticas de diversos contextos referidas a determinar tasas de interés, relacionar hasta tres magnitudes proporcionales, empleando diversas estrategias y explicando por qué las usó. Relaciona diferentes fuentes de información. Interpreta las relaciones entre las distintas operaciones.  Identifica y representa cantidades mediante números decimales periódicos o no periódicos en situaciones contextualizadas  Identifica que π, e y raíces cuadradas inexactas (como √2, √3, √5) son números irracionales  Resuelve problemas que demandan evaluar tasas de interés y efectos de un pago anticipado en transacciones financieras, y sustenta las estrategias empleadas según las condiciones del problema  Resuelve problemas referidos a relaciones de proporcionalidad directa o inversa hasta con tres magnitudes y sustenta las estrategias empleadas según las condiciones del problema  Resuelve y formula situaciones problemáticas que combinan variadas estructuras (aditivas, multiplicativas y de proporcionalidad) en los distintos conjuntos numéricos y variados contextos, y sustenta las estrategias empleadas según las condiciones del problema.  Discrimina entre la pertinencia del cálculo exacto o estimado para dar respuesta a un problema.  Reconoce que, cuando debe proporcionar una medida muy precisa, necesita emplear décimas, centésimas y milésimas para expresar la medición.  Identifica las dificultades que tuvo al aplicar una estrategia para resolver un problema y reflexiona sobre otras formas de solución. Cambio y Relaciones Generaliza y verifica la regla de formación de sumatorias notables, de sucesiones con distintos patrones, evalúa el valor máximo o mínimo de una sucesión, formula conjeturas sobre el comportamiento de una sucesión cuando tiende al infinito. Interpreta que una variable puede representar un valor constante de un parámetro. Modela las condiciones planteadas en una situación mediante sistemas de inecuaciones lineales y ecuaciones exponenciales; usa con flexibilidad diversas técnicas de simplificación y de solución, y argumenta los procedimientos seguidos. Modela situaciones o fenómenos de diversos contextos haciendo uso de variadas funciones definidas en tramos; conjetura cuando una relación entre dos magnitudes puede tener un comportamiento exponencial, logarítmico o periódico1; o Determina a partir de casos particulares las expresiones generales de sumatorias notables, como la suma de números pares, impares, cuadrados perfectos, cubos perfectos y las “n” primeras potencias naturales. o Identifica el valor máximo o mínimo que va tomando una sucesión al acercarse al infinito empleando herramientas tecnológicas; por ejemplo, explora con ayuda de herramientas tecnológicas (calculadora, software) cuál es el valor máximo de la sucesión o Resuelve por métodos gráficos una situación problemática mediante un sistema de inecuaciones lineales con dos variables o Interpreta y representa modelos de funciones definidas en tramos; por ejemplo dada una función definida en tramos, el estudiante la gráfica considerando los dominios para la cual se encuentra definida. o Argumenta sus predicciones sobre el comportamiento exponencial o periódico de la relación entre dos magnitudes

Geometría Construye y representa formas bidimensionales y tridimensionales considerando propiedades, relaciones métricas, relaciones de semejanza y congruencia entre formas. Clasifica formas geométricas estableciendo relaciones de inclusión entre clases y las argumenta. Estima y calcula áreas de superficies compuestas que incluyen formas circulares y no poligonales, volúmenes de cuerpos de revolución y distancias inaccesibles usando relaciones métricas y razones trigonométricas, evaluando la pertinencia de realizar una medida exacta o estimada. Interpreta y evalúa rutas en mapas y planos para optimizar trayectorias de desplazamiento. Formula y comprueba conjeturas relacionadas con el efecto de aplicar dos transformaciones sobre una forma bidimensional. Interpreta movimientos rectos, circulares y parabólicos mediante modelos algebraicos y los representa en el plano cartesiano  Resuelve situaciones en las que requiere generar información a partir de las propiedades de las formas en una construcción.  Identifica propiedades comunes entre formas poligonales de la misma familia; por ejemplo, elabora un organizador visual respecto a la clasificación de cuadriláteros o triángulos donde se observe la inclusión de clases  Identifica las características de los cuerpos geométricos de revolución a partir de sus diferentes desarrollos  Utiliza razones trigonométricas para determinar longitudes y medidas angulares.  Realiza conjeturas y las comprueba respecto de la combinación de transformaciones que se aplicó a una forma bidimensional para obtener un determinado resultado  Interpreta que un conjunto de rectas paralelas tienen la misma pendiente.  Construye rectas paralelas o perpendiculares en el plano cartesiano a partir de la interpretación de sus elementos expresados algebraicamente  Estadística y probabilida d Recopila de forma directa e indirecta datos referidos a variables cualitativas o cuantitativas involucradas en una investigación, los organiza, representa, y describe en tablas y gráficos pertinentes al tipo de variables estadísticas. Determina la muestra representativa de una población usando criterios de pertinencia y proporcionalidad. Interpreta el sesgo en la distribución obtenida de un conjunto de datos. Infiere información del análisis de tablas y gráficos, y lo argumenta. Interpreta y determina medidas de localización y desviación estándar para representar las características de un conjunto de datos. Formula una situación aleatoria considerando el contexto, las condiciones y restricciones para la determinación de su espacio muestral y de sus sucesos.  Reconoce en una investigación la variable o las variables en estudio, la población objetivo y si la muestra es adecuada o no a ella; por ejemplo, para conocer información sobre los estudiantes varones del colegio, debe indicar que no es pertinente solo tomar datos en un aula o escoger solo un aula de primaria y otra de secundaria, sino tomar una cantidad proporcional de varones en cada grado.  Explica la relación entre un censo y una muestra representativa.  Identifica las aplicaciones, ventajas y desventajas de los distintos tipos de gráficos estadísticos  Determina el tipo de organización o presentación de datos de acuerdo a la naturaleza de la variable estudiada; por ejemplo reconoce que un histograma es más adecuado para representar datos cuantitativos continuos que datos cualitativos  Determina la moda, mediana, media aritmética o los cuantiles de un conjunto de datos agrupados  Explica cuál es la medida de localización adecuada para representar al conjunto de datos, escogiendo entre cuartil, quintil o percentil según convenga; por ejemplo, usa el quintil para identificar el quinto superior de la clase  Interpreta y compara resultados estadísticos provenientes de medios de comunicación

 Interpreta la media, mediana y moda en distribuciones de distinta dispersión y asimetría.  Interpreta el valor de la desviación estándar en un conjunto de datos.  Explica cómo las diferentes maneras de presentar una información influyen en la Interpretación de los datos que pueden hacer los usuarios.  Formula una situación aleatoria describiendo sus restricciones y usa diferentes estrategias para obtener su espacio muestral.

IX. ORGANIZACIÓN DE LAS UNIDADES DIDÁCTICAS DOMINIO TÍTULO DE LA UNIDAD TIPO DE UNIDAD DIDACTICA TIEMPO CRONOGRAMA BIMESTRE I II III IV Númeroy operaciones Explorando los números racionales en su contexto Unidad de aprendizaje 03 semanas X Aplicando las propiedades de los números racionales en la vida diaria. Unidad de aprendizaje 04 Semanas X Experimentando situaciones de medida Unidad de aprendizaje 03 semanas X Cambioyrelaciones Patrones geométricos con implicancia artística y cotidiana Unidad de Aprendizaje 03 semanas X Ecuaciones e inecuaciones lineales en situaciones de equivalencia Unidad de aprendizaje 03 semanas X Resolviendo situaciones del entorno aplicando proporcionalidad directa e inversa Unidad de Aprendizaje 03 semanas X Empleando la función lineal y lineal afín en nuestro contexto Unidad de aprendizaje 02 semanas X Geometría Figuras geométricas, en el plano y espacio. Áreas Unidad de Aprendizaje 03 semanas X Cuerpos geométricos Unidad de aprendizaje 03 semana X Transformaciones Unidad de aprendizaje 03 semanas X Estadísticay probabilidad Estadística Unidad de aprendizaje 04 semanas X Probabilidades Unidad de aprendizaje 03 semanas X Combinatoria Unidad de aprendizaje 03 semanas X X. CALENDARIZACIÓN: XI. ESTRATEGIAS METODOLOGICAS DEL ÁREA METODOS TÉCNICAS  método Inductivo-deductivo  método demostrativo o deductivo  Método de las 6 etapas de Zoltan Dienes  Método de Resolución de problemas  Rejilla  Debates  Lluvia de ideas  Dinámicas de animación BIMESTRE DURACIÓN SEMANAS HORAS HORAS EFECTIVAS NO EFECTIVAS INICIO TÉRMINO I 03-03-14 16-05-14 10 385 322 63 II 19-05-14 01-08-14 11 378 347 31 VACACIONES 04-08-2014 AL 18-08-2014 III 11-08-14 17-10-14 09 305 277 28 IV 20-10-14 19-12-14 10 350 329 21 TOTALES 40 1418 1275 143

 Método Participativo  Método de los ejemplos  Método de proyectos.  Dinámicas grupales  Sustentaciones XII. VALORES Y ACTITUDES XIII. RECURSOS Y MATERIALES EDUCATIVOS. 8.1 Del alumno: Cuaderno de trabajo, textos de consulta, papelógrafos, plumones de color reglas, Compás, cartulina, cinta de embalaje, computadoras 8.2 Del profesor: Láminas, videos, Software educativos, diapositivas, equipo multimedia, papelógrafos, lecturas reflexivas, bloques lógicos, casinos matemáticos, multicubos ensamblables, tangram, sólidos geométricos, web 2.0 XIV. ORIENTACIONES PARA LA EVALUACIÓN: VALORES A C T I T U D E S ANTE EL AREA COMPORTAMIENTO RESPETO  Es cortés en el trabajo en equipo al resolver ejercicios numéricos.  Toma la iniciativa para formular preguntas, buscar conjeturas y plantear problemas.  Asume los errores con naturalidad cundo se equivoca al resolver ejercicios y problemas.  Es tolerante con sus compañeros ante las dificultades que pueda tener al entender los problemas matemáticos.  Tolera las actitudes inadecuadas involuntarias de sus compañeros  Saluda cordialmente a los Profesores y compañeros.  Demuestra constantemente aseo personal  Emplea un vocabulario adecuado para comunicarse.  Respeta las normas de convivencia del aula y en la Institución educativa IDENTIDAD  Toma la iniciativa para formular preguntas durante la explicación de los ejercicios resueltos  Valora la importancia de cumplir con la resolución de prácticas calificadas de contenidos matemáticos.  Compara las respuestas de sus ejercicios con las de sus compañeros al terminar de resolverlos.  Participa activamente en la construcción de sus aprendizajes matemáticos  Valora la importancia de los sistemas de números N, Z y Q en su vida diaria  Participa activamente en las actividades realizadas por la institución  Cuida el patrimonio del aula e institución  Asiste a la institución correctamente uniformado  Se identifica con su aula e institución.  Respeta la propiedad ajena SOLIDARIDAD  Muestra disposición para trabajar cooperativamente en la solución de ejercicios y problemas matemáticos.  Comparte sus conocimientos con sus compañeros al apoyarlos en sus procesos de solución de problemas  Defiende las respuestas con procesos lógicos de los ejercicios propuestos a su equipo de trabajo  Coopera con sus aportes en los trabajos de investigación de conocimientos matemáticos  Promueve la unión entre sus compañeros para cumplir con las tareas encomendadas.  Toma iniciativa solidaria para representar a la Institución Educativa en diferentes eventos.  Conserva los enseres y ayuda a sus compañeras de la Institución  Colabora con sus compañeros en determinadas situaciones.  Interviene como mediador para solucionar conflictos RESPONSABILIDAD  Demuestra persistencia para solucionar ejercicios y problemas matemáticos  Propone alternativas de solución a los ejercicios designados a su equipo.  Asume compromisos y los cumple al presentar material didáctico para la sustentación de ejercicios y problemas.  Trae ,utiliza y cuida el material didáctico requerido para el desarrollo de la sesión de matemática  Se esfuerza por superar errores en la ejecución de tareas matemáticas  Es puntual al llegar a la institución educativa y a su aula.  Participa en forma permanente y autónoma  Cumple con sus comisiones designadas en forma individual y grupal.  Ayuda con el orden y la limpieza de su equipo y aula.

La evaluación se realizará durante todo el proceso será permanente, integral y diferenciada respetando el ritmo y estilo de los estudiantes para determinar dificultades y aciertos con la finalidad de mejorar el aprendizaje. Los calificativos se originan a partir de los indicadores formulados en las matrices de evaluación. 1. SEGÚN EL MOMENTO DE APLICACIÒN EVALUACION INICIAL EVALUACION PROCESUAL EVALUACIÒN FINAL Se realiza al comienzo del Área académica, escolar. Consiste en la recogida de datos antes de los nuevos aprendizajes, para conocer las ideas previas de los alumnos (saberes y competencias y también para valorar si al final de un proceso, los resultados son satisfactorios o insatisfactorios. Se da dentro del proceso para obtener datos parciales sobre las competencias y capacidades que se van adquiriendo lo cual permite la toma de decisiones pedagógicas (avanzar en el programa o retroceder, cambiar estrategias metodológicas, quitar, simplificar o agregar contenidos, etc Constituye el cierre del proceso, ya sea en las etapas intermedias (Bimestrales, trimestrales, anuales) Su función es verificar / certificar que las competencias correspondan a un modelo previamente acordado durante el proceso de enseñanza- aprendizaje. 2. SEGÚN SUS AGENTES O ACTORES: AUTOEVALUACION COEVALUACIÒN HETEROEVALUACIÒN Se produce cuando el estudiante evalúa sus propias actuaciones, capacidades, actitudes, etc. Es la evaluación mutua o conjunta. De una actividad realizada entre varios Consiste en la evaluación que realiza una persona sobre otra: su trabajo, su actuación, su rendimiento, etc. Es la evaluación que habitualmente lleva a cabo el profesor con los estudiantes. XV. REFERENCIAS BIBLIOGRAFICAS 10.1 Para el docente:  Ministerio de Educación (2005). Matemática 4°: Manual del docente. Lima: Santillana  Capuñay, J. (1975). Algebra: Volumen I y II. Trujillo: Colección J.C.R  Murray, S. (1988) Teoría y problemas de probabilidad y estadística. Madrid, McGraw-Hill, (Serie de compendios Schaum).  Figueroa, R. (1993). Matemática Básica 3. Lima: Edigra 10.2 Para el alumno:  Ministerio de Educación (2005). Matemática 4°: Lima: Santillana  Coveñas, M. (1995) Matemática para Educación Secundaria 4. Lima: Coveñas S.A.C  Rojas, A. (2003) Matemática 3: Educación Secundaria. Lima: San Marcos.  Molina, R. (2006). Taller de matemática en aula Lima: Molina Chimbote, marzo 2014 PROCEDMIENTOS INSTRUMENTOS:  Observación  Situaciones Orales  Trabajos Prácticos  En forma individualizada  En forma colectiva  Registro anecdótico, lista de cotejo  Exámenes orales  Practicas Calificadas  Pruebas objetivas  Cuaderno de tareas V° B°____________________ DIRECTOR ________________________ Lic. Hugo T. RIVERA PRIETO PROFESOR

Add a comment

Related presentations

Related pages

Programacion De Matematica Con Rutas - Girls Room Idea

Programación con rutas 4º Secundaria Matematica. Programación con rutas 4º Secundaria Matematica 1. PROGRAMAS DE ESPECIALIZACIÓN DOCENTE 2012 ...
Read more

Programación con rutas 4º Secundaria Matematica - Education

Programación con rutas 4º Secundaria Matematica; Programación con rutas 4º Secundaria Matematica ... Share Programación con rutas 4º Secundaria ...
Read more

Programaciones Matematica Secundaria Con Rutas - Girls ...

Programación con rutas 4º Secundaria Matematica. Programación con rutas 4º Secundaria Matematica 1. PROGRAMAS DE ESPECIALIZACIÓN DOCENTE 2012 ...
Read more

Programacion Anual De Matematica 2015 Cuarto De Secundaria ...

... PROGRAMACION ANUAL 2015 2016 con rutas 4º Secundaria Matematica 1. ... 2015 cuarto PROGRAMACION ANUAL 2015 2016 con rutas 4º Secundaria ...
Read more

Programación de Matemáticas - iesitaba.com

Objetivos para Matemáticas A y objetivos mínimos en 4º ESO ... mínimas correspondientes a la Educación Secundaria ... DE LA PROGRAMACIÓN CON EL ...
Read more