advertisement

Phan Dang Cam Tu

50 %
50 %
advertisement
Information about Phan Dang Cam Tu
Education

Published on September 19, 2017

Author: daykemquynhon

Source: authorstream.com

advertisement

NGHIÊN CỨU VỀ ĐỘ BỀN VÀ CẤU TRÚC ELECTRON CỦA DÃY CLUSTER Ge12M (M = Sc – Ni) BẰNG PHƯƠNG PHÁP HÓA HỌC TÍNH TOÁN: NGHIÊN CỨU VỀ ĐỘ BỀN VÀ CẤU TRÚC ELECTRON CỦA DÃY CLUSTER Ge 12 M (M = Sc – Ni) BẰNG PHƯƠNG PHÁP HÓA HỌC TÍNH TOÁN Promoter : Assoc. Prof. Dr. Nguyễn Tiến Trung Students : Phan Đặng Cẩm Tú Nguyễn Thanh Thảo Tú Trần Tường Sơn QUY NHON UNIVERSITY Chemistry Department A STUDY ON STABILITY, ELECTRONIC STRUCTURE OF DOPED GERMANIUM CLUSTERS Ge 12 M (M = Sc – Ni) USING COMPUTATIONAL CHEMICAL METHOD Slide 2: Introduction Theoretical method Results and discussion Conclusions Petitions OUTLINE Slide 3: INTRODUCTION Spectroscope Optical cable Medicines IC 1.José M. Goicoechea, John E. McGrady, Dalton Trans, The Royal Society of Chemistry, 2015, 44, 6755-6766. 2.Debashis Bandyopadhyay, Prasenjit Sen, J. Phys. Chem., A 2010, 114, 1835-1842. 3.Kapil Dhaka, Debashis Bandyopadhyay, RSC Adv., 2015, 5, 83004–83012.: Ge 12 Cr : Neha Kapila et al.: Ge 13 structure with C 2v symmetry with one Ge atom replaced by Cr. John E. McGrady : the perfect icosahedra. Kapil Dhaka and D. Bandyopadhyay : HP . 1.José M. Goicoechea , John E. McGrady , Dalton Trans , The Royal Society of Chemistry , 2015 , 44, 6755-6766. 2.Debashis Bandyopadhyay , Prasenjit Sen , J. Phys. Chem. , A 2010 , 114, 1835-1842. 3.Kapil Dhaka, Debashis Bandyopadhyay , RSC Adv. , 2015 , 5, 83004–83012. Ge 12 Ni : Neha Kapila et al. and Jing Lu: HP . John E. McGrady et al.: BPP . Ge 12 M clusters Slide 5: NGHIÊN CỨU VỀ ĐỘ BỀN VÀ CẤU TRÚC ELECTRON CỦA DÃY CLUSTER Ge 12 M (M = Sc – Ni) BẰNG PHƯƠNG PHÁP HÓA HỌC TÍNH TOÁN A STUDY ON STABILITY, ELECTRONIC STRUCTURE OF DOPED GERMANIUM CLUSTERS Ge 12 M (M = Sc – Ni) USING COMPUTATIONAL CHEMICAL METHOD Slide 6: THEORETICAL METHOD Computational method BP86; the Lanl2dz basis set. Some other softwares : Gaussian 03, GaussView 05, Corel Draw, Origin, JMol , NBO 5.G … Slide 7: Ge 12 Ti cluster 1. Low-lying isomers of Ge 12 M ( M = Sc- Ni ) RESULTS AND DISCUSSION Ge 12 Sc cluster Sc-1 Doublet [ C s ; 2 A’; 0 . 00 ] Quartet [ C 1 ; 4 A; 0 . 20 ] Sextet [ C s ; 6 A’; 1 . 10 ] Sc-2 Doublet [ C s ; 2 A’; 0 . 02 ] Quartet [ C 1 ; 4 A; 0 . 48 ] Sextet [ C s ; 6 A’’; 0 . 02 ] Sc-3 Doublet [ C 1 ; 2 A; 0 . 08 ] Quartet [ C 1 ; 4 A; 0 .7 9 ] Sextet [ C 1 ; 6 A; 1 .5 3 ] Sc-6 Doublet [ C 1 ; 2 A; 0 . 70] Quartet [ C 1 ; 4 A; 1 . 30] Sextet [ C 1 ; 6 A; 2 . 14] Ti-1 Singlet [ C 1 ; 1 A; 0 . 00 ] Triplet [ C 2 h ; 3 B g ; 0 . 22 ] Quintet [ C 1 ; 5 A; 1 . 31 ] Ti-3 Singlet [ C 1 ; 1 A; 0 . 31] Triplet [ C s ; 3 A’’; 0 . 63] Quintet [ C s ; 5 A’’; 1 . 33] Ti-4 Singlet [ C s ; 1 A’; 0 . 47] Triplet [ C 1 ; 3 A; 0 . 94] Quintet [ C 1 ; 5 A; 1 . 75] Ti-6 Singlet [C 1 ; 1 A; 2 . 19] Triplet [C 1 ; 3 A; 2 . 30] Quintet [C 1 ; 5 A; 2 . 78] Slide 8: V-1 Doublet [ C i ; 2 A; 0 . 00 ] Quartet [ D 3 d ; 4 A 1g ; 0 . 65 ] Sextet [ C s ; 6 A’; 1 . 64 ] V-3 Doublet [ C 2 v ; 2 A 1 ; 0 . 78] Quartet [ C 1 ; 4 A; 1 . 51] Sextet [ C 1 ; 6 A; 1 . 36] V-4 Quartet [ C s ; 4 A’’; 0 . 96] Sextet [ C s ; 6 A; 1 . 49] V-5 Quartet [ C 1 ; 4 A; 1 . 08] Doublet [C 1 ; 2 A; 1 . 14] Sextet [ C 1 ; 6 A; 1 . 87] Ge 12 V cluster Ge 12 Cr cluster   Cr-1 Singlet [ D 3 d ; 1 A 1g ; 0 . 00 ] Triplet [ C 1 ; 3 A; 0 . 01 ] Quintet [ C 1 ; 5 A; 0 . 78 ] Cr-3 Singlet [ C 1 ; 1 A; 0 . 53] Triplet [ C 1 ; 3 A; 0 . 61] Quintet [ C 1 ; 5 A; 0 . 79]   Cr-4 Triplet [ C 1 ; 3 A; 0 . 56] Quintet [ C 1 ; 5 A; 0 . 77] Singlet [ C 1 ; 1 A; 1 . 20] Cr-5 Triplet [C 1 ; 3 A; 2 . 36] Quintet [C 1 ; 5 A; 2 . 42] Singlet [C 1 ; 1 A; 3 . 16] Slide 9: Ge 12 Mn cluster Ge 12 Fe cluster Mn-1 Doublet [ D 3 d ; 2 A 1g ; 0 . 00 ] Quartet [ C i ; 4 A g ; 0 . 64 ] Sextet [ C 1 ; 6 A; 1 . 22 ] Mn-2 Doublet [ C s ; 2 A”; 0 . 75] Quartet [ C 2 ; 4 A; 0 . 90] Sextet [ D 2 ; 6 B 3 ; 1 . 64] Mn-4 Quartet [ C 1 ; 4 A; 1 . 29] Sextet [ C i ; 6 A g ; 0 . 80] Mn-5 Doublet [ C 1 ; 2 A; 0 . 85] Quartet [ C 1 ; 4 A; 0 . 90] Sextet [ C s ; 6 A’; 1 . 32] Fe-1 Triplet [ C 1 ; 3 A; 0 . 00 ] Singlet [ D 3 d ; 1 A 1g ; 0 . 20 ] Quintet [ C 1 ; 5 A; 0 . 47 ] Fe-3 Triplet [ C 1 ; 3 A; 0 . 38] Singlet [ C 1 ; 1 A; 0 . 40] Quintet[ S 4 ; 5 B; 0 . 75] Fe-4 Triplet [ C 1 ; 3 A; 0 . 87] Quintet [ C 1 ; 5 A; 1 . 71] Fe-5 Singlet [ C 1 ; 1 A; 0 . 45] Triplet [ C 1 ; 3 A; 0 . 56] Quintet [ C 1 ; 5 A; 1 . 03] Slide 10: Ge 12 Co cluster Ge 12 Ni cluster Co-1 Doublet [ C 1 ; 2 A; 0 . 00 ] Quartet [ C 1 ; 4 A; 0 . 66 ] Sextet [ C 1 ; 6 A; 1 . 56 ] Co-2 Doublet [ C 2 h ; 2 A bg ; 0 . 06 ] Quartet [ C 1 ; 4 A; 0 . 37 ] Sextet [ C 1 ; 6 A; 1 . 73 ] Co-3 Doublet [ C 1 ; 2 A; 0 . 09 ] Quartet [ C 2 v ; 4 A 2 ; 1 . 29 ] Sextet [ C 2 v ; 6 B 2 ; 2 . 11 ] Co-4 Doublet [ C s ; 2 A’’; 0 . 11] Quartet [ C 1 ; 4 A; 0 . 70] Sextet [ C 1 ; 6 A; 1 . 53] Ni-1 Singlet [ D 2 d ; 1 A 1 ; 0 . 00 ] Triplet [ D 2 ; 3 B 1; 0 . 53 ] Quintet [ C 1 ; 5 A; 1 . 15 ] Ni-3 Singlet [ C s ; 1 A’ ; 0 . 16] Triplet [ C s ; 3 A’’ ; 0 . 54] Quintet [ C 1 ; 5 A ; 1 . 38] Ni-4 Singlet [ C 1 ; 1 A ; 0 . 26] Triplet [ C 1 ; 3 A ; 0 . 30] Quintet [ C 2 h ; 5 B u ; 1 . 66] Ni-6 Triplet [ C 1 ; 3 A ; 0 . 58] Quintet [ C 1 ; 5 A ; 1 . 38] Slide 11: Ge 12 Sc-1 Doublet [ C s ; 2 A’; 0 . 00 ] Ge 12 Sc-2 Doublet [ C s ; 2 A’; 0 . 02 ] Ge 12 Sc-3 Doublet [ C 1 ; 2 A; 0 . 08 ] Ge 12 Ti Singlet [ C 1 ; 1 A] Ge 12 V Doublet [ C i ; 2 A] Ge 12 Cr Singlet [ D 3 d ; 1 A 1g ] Ge 12 Mn Doublet [ D 3 d ; 2 A 1g ] Ge 12 Fe Triplet [ C 1 ; 3 A] Ge 12 Co-1 Doublet [ C 1 ; 2 A; 0 . 00 ] Ge 12 Co-2 Doublet [ C 2 h ; 2 A bg; 0 . 06 ] Ge 12 Ni Singlet [ D 2 d ; 1 A 1 ] There is a change of structures of Ge 12 M (M = Sc - Ni) series. With M = Sc – Fe: the hexagonal prism ( HP ). With M = Co, Ni: the bicapped pentagonal prism ( BPP ). Slide 12: Binding energy of Ge 12 Ti and Ge 12 Cr clusters are larger than the others, so Ge 12 Ti and Ge 12 Cr are more stable than the others in series. 2.1 The Average Binding Energy (BE) Table 1 . Total energy (hartree ) of Ge , M, Ge 12 M cluster s and the average binding energy (eV ) Ge 12 M clusters. M E(M) E(Ge 12 M) BE(Ge 12 M) Sc - 46 . 383887 - 92 . 234244 2 . 93 Ti - 57 . 563391 - 103 . 903463 3 . 96 V - 71 . 2276617 - 117 . 169488 3 . 13 Cr - 86 . 0482997 - 132 . 146831 3 . 46 Mn - 103 . 797821 - 149 . 795072 3 . 25 Fe - 123 . 293246 - 169 . 328687 3 . 33 Co - 145 . 074091 - 190 . 979333 3 . 05 Ni - 169 . 165082 - 215 . 228832 3 . 39 2. Stability of clusters Slide 13: 2.2 Embedding Engergy (EE) Table 2 . Embedding enery of Ge 12 M cluste r s (M = Sc – Ni ). M E(M) E(Ge 12 M) EE(Ge 12 M) Sc - 46 . 383887 - 92 . 24453497 6 . 53 Ti - 57 . 563391 - 103 . 9145169 19 . 14 V - 71 . 2276617 - 117 . 1807734 8 . 10 Cr - 86 . 0482997 - 132 . 1589141 12 . 94 Mn - 103 . 797821 - 149 . 8071398 10 . 12 Fe - 123 . 293246 - 169 . 340142 10 . 31 Co - 145 . 074091 - 190 . 9903935 7 . 53 Ni - 169 . 165082 - 215 . 2398543 11 . 64 Removing Ti, Cr atoms from Ge 12 Ti, Ge 12 Cr required more energy than the others in series. This conclusion consistents with the analysis of the BE above. Slide 14: 2.3 NBO analysis The maximum of  s ,  d are attained at M = Ti, Cr . The bonds between Ti, Cr and Ge atoms in Ge 12 Ti and Ge 12 Cr are stronger than other clusters. It confirms that Ge 12 Ti and Ge 12 Cr are more stable than the others in Ge 12 M series, once more. M Electronic configuration on M Electronic configuration on M (Ge 12 M )  s  d Sc 3d 1 . 9 4s 1 . 9 3d 3 . 76 4s 0 . 34 4p 1 . 46 1 . 56 1 . 86 Ti 3d 2 . 17 4s 1 . 83 3d 5 . 34 4s 0 . 42 4p 1 . 38 1 . 41 3 . 17 V 3d 3 . 8 4s 1 . 2 3d 6 . 32 4s 0 . 41 4p 1 . 34 0 . 79 2 . 52 Cr 3d 4 . 04 4s 1 . 96 3d 7 . 08 4s 0,40 4p 1 . 24 1 . 56 3 . 04 Mn 3d 5 . 99 4s 1 . 00 3d 7 .3 1 4s 0 . 41 4p 1 . 17 0 . 59 1 . 32 Fe 3d 6 . 98 4s 1 . 00 3d 7 . 69 4s 0 . 45 4p 1 . 18 0 . 55 0 . 71 Co 3d 7 . 99 4s 1 . 00 3d 9 . 11 4s 0 . 41 4p 1 . 21 0 . 59 1 . 12 Ni 3d 10 . 00 4s 0 . 00 3d 9 . 60 4s 0 . 46 4p 1 . 22 0 . 46 0 . 40 CONCLUSIONS: CONCLUSIONS Has found more than 100 stable isomers of Ge 12 M clusters (M = Sc – Ni) at different spin states by using computational method BP86 and Lanl2dz basis set. Identified the lowest-lying isomers of Ge 12 M clusters (M = Sc – Ni) . The ground states of Ge 12 M favor cage structures with dopant atoms lying completely in the cage and the substitution rule is no longer appropriate. There is a change of structures of Ge 12 M (M = Sc - Ni) series. In which, M=Sc-Fe: Hexagonal Prism , M=Co, Ni: Bicapped Pentagonal Prism . Results of BE, EE, VEA and NBO analysis show that G e 12 Ti and Ge 12 Cr clusters are more stable than the others in Ge 12 M (M = Sc - Ni) series. FUTHER WORK: FUTHER WORK Continue to optimize stable structures of Ge 12 M clusters at higher level to confirm reliability of the results. Expand the study on structure and stability of Ge 12 M clusters at different charge states, such as: cation or anion, to find out low-lying isomers with high symmetry. Do further research on electron distribution and dependence of stability on geometrical and electronic structures to find out the rule which has an affect on the stabilities of these clusters. Slide 17: Thanks for your attention!

Add a comment

Related presentations