PHALADEEPIKA - CHAPTER 24

17 %
83 %
Information about PHALADEEPIKA - CHAPTER 24
Education

Published on July 20, 2014

Author: Mullappilly

Source: slideshare.net

Description

Phaladeepika chapter 24 for reference purposes

A≤ymbw 24 (AjvSIh¿§w ˛ XpS¿®) 515 Language : Malayalam PHALADEEPIKA (INDIAN ASTROLOGY) CHAPTER TWENTY FOUR ASHTAKA VARGA (contd.) AUTHOR MANTRESWARA Translation, DTP and Layout by Mullappilly Protected with Copy Right Rules by the TranslatorotecteL

^eZo]nI 516 ^eZo]nI (tPymXnjw) {KŸImc≥ at{¥izc≥ aebmfw X¿÷a ap√∏n≈n

A≤ymbw 24 (AjvSIh¿§w ˛ XpS¿®) 517 A≤mbw 24 AjvSIh¿§w (XpS¿®) 1. n¿ΔN߃ 1. AjvSh¿§w 2. `n∂mjvSIh¿§w 3. {]kvXmcmjvSIh¿§w 4. {XntImWtim[bpw GIm[n]Xytim[bpw 5.. ip≤]nfiw 2 Nne {][m AjvSh¿§^e߃ . 1. kqcymjvSh¿§^ew (]nXrt¢iw) {XntImW£{X߃ tim[y]nfiw tim[yhpw timjhpw. 2. N{μmjvSh¿§^ew (amXrlmn) 3. IpPmjvSh¿§^ew (ktlmZcKpWw) 4. _p[mjvSh¿§^ew (_‘pKpWw) 5. hymgmjvSh¿§^ew (]p{XKpWw) . 6. ip{ImjvSh¿§^ew (If{XKpWw) 7. aμmjvSh¿§^ew (PmXIs‚ arXn) 3. {XntImWtim[ 4. GIm[n]Xytim[ 5 DZmlcWPmXIØn¬ k]vX{KlßfpsS AjvSh¿§w, tim[Iƒ°p apºpw ]n≥]pw 6. tim[y]nfiw 7. cminKpWImc߃ 8. {KlKpWImc߃ 9. ImeN{I ZimKW 10 lcW߃ 11. kapZmbmjvSh¿§w 12. kapZmbmjvSh¿§^ew

^eZo]nI 518 1. n¿ΔN߃ 1. AjvSh¿§w Hcp cminsb F´p `mKßfm°nbpw e·hpw k]vX{Klßfpw tN¿∂ F´ns _‘s∏SpØnbpw BWv AjvSh¿§w ImWp∂Xv. AjvSIh¿§Øn¬ Hcp cminbn¬ hcmhp∂ G‰hpw henb kwJy F´mWv. .kqcymjvSh¿§w, N{μmjvSh¿§w, IpPmjvSh¿§w, _p[mjvSh¿§w, Kp¿hmjvSh¿§w, ip{ImjvSh¿§w, aμmjvSh¿§w, e·mjvSh¿§w. F∂nhbmWv AjvSh¿§w..{KlßfpsS AjvSh¿§_ew ImWp∂Xnv D]tbmKs∏SpØp∂ps≠¶nepw, e·mjvSh¿§w e·Øns‚ ^e{]hNØnp hcp∂n√. . 2. `n∂mjvSIh¿§w AjvSh¿§anSptºmƒ cminN{Iw hc®v AXmXv A£ßƒ°v AXmXp {KlßfpsS t]scgpXp∂XmWv `n∂mjvSh¿§w. Hmtcm cminbnepw BcpsSsb√mw A£amWp hoWncn°p∂sXp a n°m≥ CXv D]Icn°pw. 3. {]kvXmcmjvSIh¿§w k]vX{Klßfpw e·hpw F´pw Hmtcm cminbptSbpw 1/8 `mKØns‚ ]XnIfmWv. GXp I£ybnemtWm A£w hngp∂Xv, B `mKØp k©cn°ptºmgmWv B AjvSh¿§ mY≥ Xs‚ ImcIXz߃ Apkcn®p≈ ^ew ¬Ip∂Xv. (Hcp `mKw 30/8 = 3.45 Un{Kn) 4. {XntImWtim[bpw GIm[n]Xytim[bpw AjvSh¿§Øn¬ Hmtcm {KlßfpsSbpw A£ßƒ C´p Ign™m¬ ]ns∂ D]cnKWnXØnp th≠n Ahsb {Ias∏SpØn FSp°p∂XmWv Ch. c≠pw ∂mep XcØn¬ sNømp≠v 5. ip≤]nfiw AjvSh¿§Øn¬ {XntImWtim[bpw GIm[n]Xytim[bpw Ign®v tijap≈ A£ßsf AXmXp cminIfptSbpw AhnsS n¬°p∂ {KlßfptSbpw KpWImcwsIm≠v vKpWn®v F√mwIqSn Iq´n°n´p∂XmWv ip≤]nfiw. tlmcmimkv{Xw HºXma≤ymbw AjvSh¿§{]IcWamWv. AXn¬ BsI F´p t«mIßtf D≈q ˛˛ Ggp t«mIßfn¬ Ggp {KlßfpsS AjvSIh¿§ßfpw F´masØ t«mIØn¬ Ah ^ehn]mIsØ Fßs kzm[on°p∂psh∂pw hnhcn°p∂p. (Cu t«mIw Ign™ A≤ymbØn¬ ]Ømwt«mIambn h∂n´p≠v.) Cu F´p t«mIfpsS hnjbsØbmWv ^e Zo]nIc≠≤ymbßfnembn 68 t«mIßfn¬ hnhcn®n´p≈Xv. BZyImeØv Nmc^ew kq£vaam°m≥ D]tbmKn®ncp∂ AjvSIh¿§w C∂v ^e{]hNØnp≈ Hcp {]tXyI imJ (Ashtakavarga system of Prediction) bmbnØs∂ hf¿∂n´p≠v.

A≤ymbw 24 (AjvSIh¿§w ˛ XpS¿®) 519 ^eZo]nI Ign™ A≤ymbØn¬ `n∂mjvSh¿§w, {]kvXmcmjvSh¿§w, k¿hmjvSh¿§w, F∂nh {]Xn]mZn®p. Cu A≤ymbØn¬ AjvSh¿§sØ Iptd°qSn kq£vam°mp≈ {InbIfmb {XntImWtim[, GIm[n]Xytim[ F∂nhbpw B tim[Iƒ°ptijap≈ AjvSh¿§w D]tbmKn®p≈ ^e{]hNcoXnbpw hnhcn°p∂p 2. Nne {][m AjvSh¿§^e߃ . 1. ]nXrt¢iw (kqcymjvSh¿§^ew) (1 ˛ 3) A¿°ÿnXky htam cminx ]nXrKrlx kvarXx X{Zmin^ekwJym`n¿h¿≤tbt—m[y]nfiIw. k]vXhnwilrXm√_v[w £{Xw bmXn `mptP Xkvan≥ Imte ]nXrt¢tim `hnjyXn kwibx. XXv {XntImWKtX hm f ]n ]nXrXpeyky hm arXnx kwtbmKx tim[ytimjmWmw tim[y]nfi CXn kvarXx. 1. A¿°ÿnXky htam cminx - ˛ kqcy≥ n¬°p∂ cminbpsS HºXmwcmin. 2. ]nXrKrlx kvarXx ˛ ]nXr`mhamWv 3. XXv cmin^ekwJym`n ˛ B cminbpsS kwJysIm≠v 4. h¿≤tbXv tim[y]nfiIw ˛ tim[y]nfisØ* s]cp°n AXns 5. k]vXhnwilrXme_v[w ˛ 27 sIm≠p lcn°ptºmƒ In´p∂ 6. £{Xw ˛ £{XØn¬°qSn 7. bmXn `mptP ˛ in k©cn°ptºmƒ 6. Xkvan≥ Imte ]nXrt¢tim `hnjyXn˛ ]nXrt¢iw D≠mIpw. 7. XXv {XntImWKtX hm]n ˛ AXns‚ {XntImW£{Xßfn¬** hcptºmƒ 8. ]nXrXpeyky hm arXnx ˛ A—p Xpeymb Bƒ°v (DZm: ]nXr ktlmZcv) acWw kw`hn°mw. ** {XntImW£{X߃ 1 10 19 AizXn aIw aqew `cWn ]qcw ]qcmSw Im¿ØnI D{Xw D{XmSw tcmlnWn AØw XncpthmWw aIbncw Nn{X Ahn´w XncphmXnc tNmXn NXbw ]pW¿Xw hnimJw ]qcqcp´mXn ]qbw Angw D{X´mXn Bbneyw Xrt°´ tchXn 538

^eZo]nI 520 KWnXw 1. DZmlcWPmXIØn¬ kqcy≥ CShØn¬. CShØn¬n∂pw HºXmwcmin aIcw. 2. B cminbpsS kwJysIm≠v (kqcymjvSh¿§Øn¬ aIcØnse _nμp°ƒ sIm≠v.)AYhm BdpsIm≠v tim[y]nfisØ s]cp°Ww. tim[y]nfiw ˛ 84 (tim[y]nfiw F¥msW∂pw 84 F∂ kwJy Fßns In´p∂psh∂pw hgntb hnhcn°p∂p≠v.) = 84 x 6 = 504 4. 504 s 27 sIm≠p lcn°ptºmƒ injvSw hcp∂Xv 18. AizXnbn¬n∂pw ]Xns´masØ £{Xw = Xrt°´. 5. in Xrt°´bn¬°qSn k©cn°ptºmƒ B kabØv ]nXrt¢iwD≠mIpw. 6. in AXns‚ (Xrt°´bpsS) {XntImW£{Xßfmb tchXn, Bbneyw Chbn¬ n¬°ptºmƒ A—p Xpey mb Bƒ°v (]nXrktlmZcv) acWw kw`hn°mw. * tim[y]nfiw kwtbmKx tim[ytimjmWmw tim[y]nfi CXn kvarXx ˛ tim[yw, timjw ChbpsS kwtbmKamWv tim[y]nfiw. (timjØnp ]Icw tijw F∂pw ImWp∂p.) tim[yhpw timjhpw. AjvSh¿§Ønse bYm¿∞kwJybpw GIm[n]Xytim[, {XntImWtim[ F∂nhbv°p tijap≈ kwJybpw BWv Chsb∂mWv Nne hymJymXm°fpsS A`n{]mbw. a‰p NnecpsS A`n{]mbw CXv Xmsg 23 apX¬ 26 hscbp≈ t«mIßfn¬ ]dbp∂, Bbp¿±mbØns‚ kμ¿`Øn¬ hnhcn°p∂, kwJybmWv F∂mWv. kμ¿`hpambn IqSpX¬ tbmPn°p∂Xv AXmIbm¬ B coXnbmWv ChnsS kzoIcn®n´p≈Xv. tUm.. _n. hn. cmapw Cu coXnXs∂bmWv ]n¥pS¿∂n´p≈Xv. Ccp]tØgv £{XkwJybmW.v Ccp]tØgp £{X߃ tNcptºmƒ Hcp afieamIpw. (13˛20 x 27 = 360). tim[y]nfisØ AjvSh¿§wsIm≠p s]cp°ptºmƒ In´p∂ DØcw km[mcW 360 Un{Knbn¬ IqSpXembncn°pw. AXpsIm≠mWv AXns Ccp]Øntbgp sIm≠p lcn°p∂Xv. AXpt]mse lcW^ea√ injvSw hcp∂ kwJybmWv ap°mhiyw. ChnsS Hcp Imcyw {]tXyIw Adnbmp≠v. Cu {InbsNbvXp ap°p In´p∂ h¿jw Nm{μh¿jamWv. AXns kuch¿jam°Wsa¶n¬ 324 (27 x 12) sIm≠p s]cp°n 365 sIm≠p lcn°Ww. tKmNcØn¬ in IS∂p t]mIptºmƒ A—s‚ Bbp nv tZmjIcamb Hcp £{Xwam{XamWv Ct∏mƒ In´nbn´p≈Xv. kwKXn Ipd®pIqSn hy‡amIWsa¶n¬ a‰p Ipsd Imcy߃IqSn (A—s‚ PmXIØnse Bbp¿±mbw, acWkabw, Zim]lmc߃,

A≤ymbw 24 (AjvSIh¿§w ˛ XpS¿®) 521 tbmK߃ XpSßnbhbpw AΩ Pohn®ncn∏ps≠¶n¬ AhcpsS PmXIØn¬ ssh[hytbmKapt≠m Ds≠¶n¬ AXns‚ kabw XpSßnbhbpw) ]cnKWn°mp≠v. ]nXrktlmZcs‚ ImcyØnepw CØcw ]cntim[Iƒ BhiyamWv. (4) e·mXv kptJizcmwtiiZimbmw N ]nXr£bx kpJmYZimbmw hm ]nXrXpeyarXnw htZXv. e·mXv ˛ e·Øn¬n∂pw. kptJizcmwtiiZimbmw ˛ memw`mhm[n]≥ n¬°p∂ hmwiIØns‚ mYs‚ Zibnepw. ]nXr£bx ˛ ]nXr acWap≠mImw. kpJmYZimbmw]nXrXpeyarXnw ˛ memw `mhm[n]s‚ Zibn¬ ]nXrXpeycpsS acWap≠mImw. DZmlcWPmXIØnse e·w aow. e·Øn¬n∂pw memw`mhw anYpw. anYpØns‚ A[n]≥ _p[≥. _p[≥ AwiIn®ncn°p∂Xv anYpØn¬. _p[Zibn¬ ]nXrt¢iap≠mIw. AXpt]mse memw`mhm[n]s‚ Zibn¬ (_p[Zibn¬) ]nXrXpeycpsS acWhpw kw`hn°mw. (5, 6) kwtim[y ]nfiw kqcyky c{‘amt h¿≤tbXv ZzmZti lrXmt—jcminw bmtX ZnhmItc. XXv {XntImWKtX hm f ]n acWw Xky n¿±ntiXv Ghw {KlmWmw k¿thjmw Nn¥tb∑Xnam∂cx. kwtim[y ]nfiw kqcyky ˛ kqcys‚ AjvSh¿§w tim[n®v. c{‘amt h¿≤tbXv ˛ (AXns) F´psIm≠p s]cp°n. ZzmZti lrXm ˛ ]{¥≠p sIm≠p lcn°ptºmƒ. tijcminw bmtX ZnhmItc ˛ _m°n hcp∂ cminbn¬ kqcy≥ hcptºmƒ. ]nXr£bx ˛ ]nXracWap≠mImw. XXv {XntImWKtX hm f ]n ˛ B cminbpsS {XntImWcminbn¬ kqcy≥ hcptºmgpw. acWw Xky n¿±ntiXv ˛ A—s‚ acWw ]dbWw. Ghw {KlmWmw k¿thjmw ˛ C{]Imcw F√m {Klßsfs°m≠pw Nn¥tbXv aXnam≥ cx ˛ Nn¥n°Ww. kqcyss°m≠v A—s°pdn®p Nn¥n°p∂Xpt]mse a‰p {Klßsfs°m≠p a‰p _‘p°sf°pdn®pw Nn¥n°Ww.

^eZo]nI 522 DZmlcWw/hniZoIcWw:; 1. kqcys‚ tim[y]nfisØ F´psIm≠p s]cp°pI. 84 x 8 = 672. CXns ]{¥≠psIm≠p lcn°pI. 672 / 12 = 56. _m°n 0. A—s‚ acWØnp km[yXbp≈ £{Xw (mƒ), cmin (amkw) F∂nh ap°v GItZiw Cßs KWns®Sp°mw. (A]arXyp CXn¬ s]Sn√.) F´psIm≠p s]cp°Ww F∂p ]d™Xv h¿≤tbXv F∂ kwkvIrXw hm°ns‚ ASnÿmØnemWv. H∂mw t«mIØnepw Cu A¿∞wXs∂bmWv sImSpØn´p≈Xv. F∂m¬ Cu t«mIØns‚ Nne hymJymßfn¬ s]cp°Ww F∂Xnp ]Icw Iq´Ww F∂mWp ImWp∂Xv. ^eZo]nIbn¬Øs∂, CtX {Inb ]dbp∂ a‰p t«mI߃ Cu hymJymØnv (Iq´env) ApIqeas√∂p ImWmhp∂XmWv. 2. amXrlmn (N{μmjvSh¿§^ew) (7) N{μm’pJ^ssex ]nfiw lXzm kmcmhtijnXw iu bmtX amXrlmnx {XntImW¿£KtX f ]n hm. (8) N{μmXv kpJmjvStaimwi{XntImtW Znhkm[nt] amXp¿hntbmKw X∑mtk n¿±nti√·Xx ]nXpx N{μmXv kpJ^ssex ....... ˛ N{μm¬ men¬ D≈ AjvSh¿§_nμp°sfs°m≠p tim≤y ]nfisØ s]cp°n Ccp]tØgpsIm≠p lcn®m¬ hcp∂ injvSsØ AizXn apX¬°p≈ £{X ambn FÆnbm¬ In´p∂ £{XØn¬. iu bmtX ˛ in hcp∂ kabØp. cmXrlmnx ˛ amXmhns‚ acWw kw`hn°mw. {XntImW¿£KtX A]n hm ˛ AXs√¶n¬ AXns‚ {XntImW£{X Øn¬ in hcptºmgpw CXp kw`hn°mw. N{μmXv kpJmXv ˛ N{μm¬ mens‚. AjvStai ˛ F´mw `mhm[n]≥ Awi ˛ AwiIn® cminbpsS mYs‚. {XntImtW ˛ {XntImWØn¬. Znhkm[nt] ˛ kqcy≥ hcp∂. X∑mtk ˛ amkØn¬ amXp¿hntbmKw n¿±ntiXv ˛ amXmhns‚ acWw ]dbWw.

A≤ymbw 24 (AjvSIh¿§w ˛ XpS¿®) 523 e·Xx ]nXpx ˛ C{]Imcw e·sØs°m≠p ]nXmhns‚ acWtØbpw Nn¥n°Ww. (9) `uamØrXobcminÿ^sse¿{`mXrKpWw `thXv _p[m¬ kpJ^sse¿∫‘pKpWw hm amXpeky N. 3. ktlmZcKpWw (IpPmjvSh¿§^ew) `uamXv XrXob cminÿ ^ssex ˛ sNmΔbn¬n∂pw aq∂mw cminbnep≈ AjvSh¿§_nμp°ƒsIm≠p. {`mXrKpWw `thXv ˛ ktlmZcKpWw D≠mIpw. 4. _‘pKpWw (_p[mjvSh¿§^ew) _p[m¬ kpJ^ssex ˛ _p[s‚ men¬ D≈ AjvSh¿§_nμp°ƒ sIm≠v. _‘p KpWw ˛ _‘pKpWhpw / kplrXv KpWhpw amXpeky N. ˛ amXpeKpWhpw ]dbWw. (10) KpcpÿnXkpXÿmt bmhXmw hnZytX ^ew i{XpoN{Klw(1) Xy‡zm tijmx XkymflPx kvarXmx. (1) ]mTt`Zw: Krlw 5. ]p{XKpWw (hymgmjvSh¿§^ew) KpcpÿnXkpXÿmt ˛ hymgØns‚ A©n¬. bmhXmw hnZytX ^ew ˛ D≈ _nμp°fn¬n∂pw. i{XpoN{Klw Xy‡zm ˛ i{Xp{Klw, oNØnep≈ {Klw F∂nh bpsS _nμp°sf Ipd®m¬. tijmx Xky BflPmx ˛ _m°n hcp∂ _nμp°ƒ kqNn∏n°p∂ Xmbncn°pw a°fpsS kwJy. (11) KptcmcjvSIh¿t§jp tim[y injvS^emn ssh {Iqccmin^ew Xy‡zm tijmx XkymflPmx kvarXmx. a°fpsS kwJy Kptcmx AjvSIh¿t§ ˛ Kpcphns‚ AjvSh¿§sØ. tim[y injvS^emn ˛ tim[n®m¬ _m°n In´p∂ _nμp°fn¬ n∂pw. {Iqccmin^ew Xy‡zm ˛ ]m]{KlßfpsS (Ip,a) _nμp°ƒ Ipd®m¬. tijmx Xky BflPmx kvarXmx ˛ _m°n hcp∂Xmbncn°pw a°fpsS kwJy. 542

^eZo]nI 524 (12) ^em[nIw `rtKm¿b{X X{X `mcym Pn¿bZn Xky hwim`nhr≤nx kymZ¬t] £oWm¿∞k¥Xnx. 6. If{XKpWw (ip{ImjvSh¿§^ew) ^em[nIw `rtKmx b{X ˛ ip{ImjvSh¿§Øn¬A[nIw _nμp°fp≈ cminbmWv. X{X `mcym Pnx bZn ˛ `mcybpsS P∑cminsb¶n¬. Xky hwim`n hr≤nx kymXv ˛ hwiw A`nhr≤ns∏Spw. A¬t∏ ˛ adn®,v AXv _nμp°ƒ Ipd™XmsW¶n¬. £oWm¿∞k¥Xnx ˛ [hpw k¥Xnbpw Ipd™ncn°pw. (13) tim[y]nfiw it¿e·m≤Xzm c{‘^ssex kpssJx lrXzmhtij`w bmtX atμ Poth f ]n hm arXnx. 7. PmXIs‚ arXn (aμmjvSh¿§^ew) itx ˛ inbpsS. e·m≤Xzm ˛ e·m¬ F´nse c{‘^ssex ˛ AjvSh¿§_nμp°ƒsIm≠ v tim[y]nfiw lrXzm ˛ tim[y]nfisØ s]cp°n Ccp]tØgpsIm≠p lcn®m¬ Ahtij`w ˛ In´p∂ injvSw AizXnapX¬ FÆnbm¬ In´p∂ £{X Øn¬ bmtX atμ Poth f ]n hm ˛ in As√¶n¬ Kpcp hcptºmƒ. arXnx ˛ acWw D≠mImw. (14) e·mZnaμm¥^sseIykwJym˛ h¿tj hn]ØnkvXp XYm¿°]p{Xm¬ bmhZzne·m¥^emn Xkvan˛ ∂mtim ln XtZymKkamh¿tj. e·mZnaμm¥ ˛ e·w apX¬ in n¬°p∂ cminhsc D≈ ^sseIykwJym ... A¿°]p{Xm¬ ˛ inbpsS AjvSh¿§_nμp°ƒ Iq´nbm¬ In´p∂ XtZymKkamh¿tj. ˛ FÆØnp Xpeyamb h¿jØn¬ hn]Ønx ˛ B]Øp≠mImw.

A≤ymbw 24 (AjvSIh¿§w ˛ XpS¿®) 525 bmhXv hne·m¥ ^emn ˛ AXpt]mse in n¬°p∂ cmin apX¬ e·w hscbp≈ cminIfn¬ BsI F{X _nμp°ƒ Dt≠m. XtZymKkamh¿tj ˛ AXnp Xpeyamb h¿jØnepw Xkvan≥ mtim ˛ miap≠mImw. (15) AjvSaÿ^sse¿√·mXv ]nfiw lXzm kpssJ¿`tPXv ^eambp¿hnPmobmXv {]mKztZzfm¥p Iev]tbXv. 8. Bbp v AjvSaÿ^ssex e·mXv ˛ e·m¬v F´nep≈ AjvSh¿§wsIm≠v. ]nfiw lXzm ˛ tim≤y]nfisØ s]cp°n. kpssJx `tPXv ˛ Ccp]Øntbgp ( k˛7, J˛2) sIm≠p lcn®m¬ .^ew Bbpx hnPmo bmXv ˛ In´p∂ ^ew (_nμp°ƒ) Bbp¿ssZ¿Ly amsW∂dnbpI. {]mKztZzfm¥p Iev]tbXv. ˛ acWkabw tcsØ ]d™Xpt]mse . e·m¬ F´nep≈ AjvSh¿§sØ AXmXp {KlØns‚ tim[y]nfiwtIm≠p s]cp°n Ccp]ØntbgpsIm≠p lcn°ptºmƒ _m°n hcp∂hsb Iq´nbm¬ In´p∂Xp ]cambp mWv. acWkabw t«mIw ]Xnaq∂n¬ ]d™Xpt]mse. .3. {XntImWtim[ (16, 17) {XntImtWjp Xp bZyqw XØpeyw {Xnjp tim[tbXv GIkvan≥ `ht iqty X{ØntImWw tim[tbXv. `hZzbiqty Xp tim[tbZyaμncw (1) katXz k¿htKtljp k¿hw kwtim[tbØZm. (1) `hZzbiqty tim[tbZyaμncw 4 1. {XntImtWjp Xp bZyqw XØpeyw {Xnjp tim[tbXv ˛˛ Hcp {XntImWØnse aq∂p cminIfnvepw Htc hn[Øne√ _nμp°ƒ ImWp ∂sX¶n¬, GXnemtWm _nμp°ƒ G‰hpw Ipdhv, B kwJy aq∂n¬n∂pw Ipd®v _m°n n¿ØWw 2. GIkvan≥ `ht iqty XXv {XntImWw tim[tbXv ˛˛ Hcp {XntImWØnse Hcp cminbn¬ _nμp°ƒ Cs√¶n¬ B {XntImWw tim[nt°≠Xn√.

^eZo]nI 526 {XntImWcminIƒ: taSw Nnßw [p CShw I∂n aIcw anYpw Xpemw Ipw`w I¿°Sw hr›nIw aow 3 `hZzbiqty Xp tim[tbZyaμncw ˛˛ Hcp {XntImWØnse c≠p cminIfn¬ _nμp°ƒ Cs√¶n¬ aq∂maØXpw iqyam°pI. ]mTt`Zw: (1) `hZzbiqty tim[tbZyaμncw 4 ˛˛ Cu ]mThpw AXns‚hymJymhpw a‰p hymJymßfpamtbm tUm.cmas‚ Cu hnjbØnep≈ ]pkvXIhpamtbm tbmPn°p.∂n√. 4. katXz k¿htKtljp k¿hw kwtim[tbØZm ˛˛ Hcp {XntImWØnse aq∂p cminIfnsebpw _nμp°ƒ Hcpt]mse bmsW¶n¬ aq∂pw iqyam°Ww. 4. GIm[n]Xytim[ c≠p cminIfpsS B[n]Xyap≈ {KlßfpsS ( Ip, _p, Kp, ip, a) _nμp°ƒ ho≠pw sNdpXm°n FSp°p∂XmWv Cu {Inb. Hcp cminbpsS am{Xw B[n]Xyap≈ {KlßfpsS (c, N) _nμp°ƒ°p am‰an√. (18 ˛ 22) {XntImWtim[mw IrXzm ]›mtZIm[n]XyIw t£{XZztb ^emn kypkvXZm kwtim[tb’p[nx (∂c)x {Klbpt‡ ^te lot {Klm`mth ^em[ntI Dut kZri¥zkvan≥ tim[tbZv{Klh¿÷ntX ^em[ntI {Kssl¿bpt‡ Nmykvan≥ k¿hap’rtPXv k{Klm{KlXpeytXz k¿hw kwtim[ya{KlmXv. D`m`ymw {Kllom`ymw katXz kIew XytPXv D`tbm¿{Klkwbpt‡ kwtim≤yw IZmN. GIkvan≥ `ht iqty kwtim≤yw IZmN Zzmh{Klu tNZy∂qw XØpeyw timZtb±ztbx. {XntImWtim[mw IrXzm ]›mXv GIm[n]XyIw ˛ {XntImWtim[bv°ptijw GIm[n]Xytim[ sNøWw.

A≤ymbw 24 (AjvSIh¿§w ˛ XpS¿®) 527 1. t£{XZztb ^emn kyp XZm kwtim[tbXv ˛˛ Hcp {KlØns‚ c≠p cminIfnepw _nμp°ƒ Ds≠¶nte GIm[n]Xytim [ th≠Xp≈q. (c≠p cminIfpsS B[n]Xyap≈ {KlßfpsS AjvSIh¿§ Ønt Cu tim[ D≈q.) 2 {Klbpt‡ ^te lot -{Klm`mth ^em[ntI tim[tbXv {Klh¿÷ntX˛˛ (Hcp {KlØns‚ c≠p cminIfn¬ H∂n¬ {KlÿnXn D≠mhpIbpw a‰Xn¬ C√mXncn°pIbpw sNbvXm¬) {Klap≈ cminbn¬ _nμp°ƒ Ipdhmbpw {Klan√mØ cminbn¬ IqSpXembpw Ccp∂m¬ {Klan√mØ cminbnse IqSpX¬ _nμp°sf. Dut kZriw Xp ˛˛ {Klap≈ cminbnse _nμp°ƒ°p Xpeyam°Ww. 3. ^em[ntI {Kssl¿bpt‡ Aykvan≥ k¿hap’rtPXv ˛˛ tsc adn®v, {Klw n¬°p∂ cminbn¬ _nμp°ƒ IqSpXembpw {Klan√m Ø cminbn¬Ipdhmbpw Ccp∂m¬ B Ipd™ _nμp°sf ]q¿Æambpw IfbWw. 4. k{Kl A{Kl XpeytXz k¿hw kwtim[yw A{KlmXv ˛ AX√, {KltØmSpIqSnb cminbnepw AXn√mØ cminbnepw _nμp°ƒ kaam sW∂p h∂m¬ {Klan√mØ cminbnse _nμp°sf ]msS Dt]£n°Ww. 5 D`m`ymw {Kllom`ymw katXz, kIew XytPXv ˛˛ Cn AXpa√, c≠p cminIfnepw {Kl߃ C√mXncn°pIbpw c≠nepw _nμp°ƒ Xpeyambncn°pIbpw sNbvXm¬. c≠p cminIfnsebpw _nμp°sf XyPn°Ww. 6 D`tbmx {Klkwbpt‡ kwtim≤yw IZmN ˛˛ c≠nepw {Kl߃ Ds≠¶n¬. Cu tim[ th≠Xn√. 7. GIkvan≥ `ht iqty kwtim≤yw IZmN ˛˛ c≠p cminIfn¬ Hcpcminbn¬ _nμp°ƒ C√mXncp∂mepw tim[ Bhiyan√. 8 Zzu A{Klu tNXv qw , XØpeyw tim[tbXv Zztbx ˛˛ c≠p cminIfnepw {Kl߃ C√mXncn°pIbpw c≠nsebpw _nμp°ƒ kaa√msXbpw Ccp∂m¬,. Ipd™Xntebv°v _nμp°ƒ {Ias∏SpØWw.

^eZo]nI 528 GIm[n]Xytim[ Npcp°Øn¬ 1. c≠nepw {Klap≈Xv ˛˛ am‰an√. 2. H∂n¬am{Xw {Klap≈Xv ˛˛ {Klap≈Xv {Klan√mØXv 1. _nμp°ƒ Ipdhv _nμp°ƒ IqSpX¬ ˛˛ c≠pw Ipd™Xnp Xpeyam°Ww 2. _nμp°ƒ IqSpX¬ _nμp°ƒ Ipdhv ˛˛ Ipdhp≈Xv IfbWw 3. c≠pw kaw ... ˛˛ {Klan√mØXp IfbWw 3. c≠nepw {Klan√mØXv˛ 1. c≠nepw _nμp°ƒ XpeyamsW¶¬ ˛˛ c≠pw IfbWw 2. H∂n¬ _nμp°ƒ IqSnbpw a‰Xn¬ Ipd™pw Ccp∂m¬ ˛˛ Ipd™Xv FSp°Ww. 4. H∂n¬am{Xw _nμp°ƒ D≈Xv ˛˛ am‰an√ DZmlcWPmXIØn¬ k]vX{KlßfpsS AjvSh¿§w, tim[Iƒ°p apºpw ]n≥]pw 1. kqcymjvSh¿§w {XntImWtim[ GIm[n]Xytim[ bv°ptijw bv°ptijw 2. N{μmjvSh¿§w 4 1 5 3 0 0 3 0 0 0 3 0 6 5 3 1 1 1 3 6 1 5 1 5 5 5 4 2 4 1 1 0 4 1 0 0 3. IpPmjvSh¿§w 6 2 3 2 4 1 0 0 1 1 0 0 4 5 2 3 1 3 4 1 1 0 1 0 2 2 4 4 1 0 2 1 1 0 2 1 (48) (15) (8) 5 4 3 4 6 4 6 2 5 2 4 3 3 2 0 0 2 2 3 0 3 0 0 0 0 2 0 0 2 2 2 0 0 0 0 0 (49) (19) (16) (39) (15) (11)

A≤ymbw 24 (AjvSIh¿§w ˛ XpS¿®) 529 4. _p[mjvSh¿§w 6 6 3 5 4 3 0 0 2 3 0 0 5 5 0 3 0 3 6 3 3 0 3 0 5 2 5 3 2 0 0 0 2 0 0 0 5. Kpcp AjvSh¿§w 5 2 6 5 2 0 1 1 1 0 1 1 5 3 1 0 0 0 6 6 1 4 0 4 3 6 4 5 1 3 0 0 1 3 0 0 6. ip{ImjvSh¿§w 7 6 4 5 5 2 0 2 1 2 0 2 3 4 0 2 0 2 5 4 1 0 1 0 5 2 3 4 1 0 0 0 1 0 0 0 7. in AjvSIh¿§w 6 2 2 4 4 0 0 1 2 0 0 1 4 2 1 0 1 0 4 4 2 2 1 2 4 2 3 2 2 0 0 0 2 0 0 0 8. k¿hmjvSIh¿§w 39 23 26 28 22 8 4 4 7 8 4 4 33 28 9 11 5 11 34 26 12 11 9 11 29 21 27 23 14 4 3 1 11 4 2 1 (54) (15) (13) (56) (14) (11) (52) (13) (9) (39) (12) (9) (337) (103) (77)

^eZo]nI 530 6. tim[y]nfiw (23) tim≤ymhinjvSw kwÿm]y cminamt h¿≤tbXv {Klbpt‡ f ]n X{Zmiu {Klamt h¿≤tbXv. (24) tKmknwlu Zi`n¿KpWnXu hkp`n¿anYpmfnt` hWnMvtaju N apn`nx IyIm aItc isscx. (25) tijmx kzmaKpWnXmx I¿°oNm]LSoQjmx GtX cminKpWmx t{]m‡mx ]rYIv {KlKpWmx ]rYIv. tim[y]nfiw ImWp∂ coXn tim[ymhinjvSw kwÿm]y ˛ {XntImWtim[bpw GIm[n]Xytim[ bpw sNbvXp _m°n hcp∂ AjvSh¿§ _nμp°sf. B cminbpsS cminamt h¿≤tbXv ˛ cminamw (cminKpWImcw) sIm≠p s]cp°Ww. {Kl bpt‡ A]n XXv cmiu ˛ cminbn¬ {Klßfps≠¶n¬ Ahsb {Klamt h¿≤tbXv ˛ {Klamw ({KlKpWImcw) sIm≠pw s]cp°Ww. 7. cminKpWImc߃ tKmknwlu ZiKpWnXu ˛ CShhpw Nnßhpw ]ØpsIm≠pw hkp`nx anYpmfnt` ˛ anYphpw hr›nIhpw F´psIm≠pw hWnMv taju N apn`nx ˛ Xpemhpw taShpw GgpsIm≠pw IyIm aItc isscx. ˛ I∂nbpw aIchpw A©psIm≠pw KpWn°Ww. _m°nbp≈, I¿°o Nm] LSo Qjmx ˛ I¿°SIw, [p v, Ipw`w, aow Chsb, kzmaKpWnXmx ˛ AhbpsS t]cp (cminN{IØnse kYmw) sIm≠pw KpWn°Ww (I¿°Sw ˛ 4, [p ˛ 9, Ipw`w ˛ 11, aow ˛ 12) GtX cminKpWmx t{]m‡mx ˛ ChbmWv cminKpWImc߃ ]rYKv {KlKpWmx ]rYIv ˛ {KlKpWImc߃ thsdbmWv.

A≤ymbw 24 (AjvSIh¿§w ˛ XpS¿®) 531 cminKpWImc߃ taSw CShw. anYpw I¿°SIw Nnßw I∂n Xpemw hr›nIw [p aIcw Ipw`w aow 7. 10. 8 4 10. 5. 7. 8. 9 5 11 12 (26) Pohmcip{Ikuaymmw Zihkpk]vtX{μnssbx {IamZv KpWnXm _p[kwJym tijmWmw cminKpWmXv {KlKpssWx ]rY°mcymx. 8. {KlKpWImc߃ Poh Bc ip{I kuaymmw ˛ Kpcp, IpP≥, ip{I≥, _p[≥ Chsb Zihkpk]vtX{μnssbx {IamXv ˛ 10, 8, 7, 5 F∂ {IaØnepw _p[kwJym tijmWmw ˛ tijn®hbv°p (kqcy≥, N{μ≥, in) _p[s‚ kwJybpw (5) {KlKpWImcIßfmIp∂p. cminKpWm¬ {KlKpWx ]rY°mcyx. ˛ (tim[Iƒ Ign™ AjvSh¿§sØ) cminKpWImckwJysIm≠pw {KlKpWImc kwJysIm≠pw shtΔsd s]cp°Ww. {KlKpWImcw. kqcy≥ N{μ≥ IpP≥ _p[≥ Kpcp ip{I≥ in 5 5 8 5 10 7 5 Cu nba߃sh®psIm≠v DZmlcWPmXIØnse kqcys‚ tim[y]nfiw ImWmw. .. cminKpWImcw. (_nμp°fp≈ cminIƒ°pam{Xta CXp _m[IamIp.) cminKpWImcw x kqcymjvSh¿§w taSw 7 x 2 = 14 CShw 10 ˛ ˛ anYpw 8 ˛ ˛ I¿°SIw 4 2 8 Nnßw 10 ˛ ˛ I∂n 5 ˛ ˛ Xpemw 7 ˛ ˛ hr›nIw 8 ˛ ˛ [p 9 ˛ ˛ aIcw 5 2 10 Ipw`w 11 2 22 aow 12 ˛ ˛ BsI 54

^eZo]nI 532 2. {KlKpWImcw. (_nμp°fp≈ cminIfn¬ n¬°p∂ {Kl߃°p am{Xta Cu h¿≤hp≈q. Hcp cminbn¬ H∂ne[nIw {Klßfps≠¶n¬ F√m‰npw KpWImcw H∂pXs∂). {KlKpWImcw x kqcymjvSh¿§w kqcy≥ 5 ˛ ˛ ˛ N{μ≥ 5 ˛ ˛ ˛ IpP≥ 8 x 2 16 _p[≥ 5 ˛ ˛ ˛ hymgw 10 ˛ ˛ ˛ ip{I≥ 7 x 2 14 in 5 ˛ ˛ ˛ BsI 30 3. tim[y]nfiw 54 + 30 = 84. CXmWv kqcys‚ tim[y]nfiw. CXpt]mse a‰p {KlßfpsS tim[y]nfihpw ImWWw. 9. ImeN{I ZimKW (27) Ghw KpWnXzm kwtbmPy k]vX`n¿KpWtbXv ]px k]vXhnwilrXm√_v[h¿jmWy{X `h¥n ln. (28) ZzmZimZv KpWtb√_v[m amkml¿LSnImx kvarXm ({IamXv) k]vXhnwiXn h¿jmWn aWvUew tim[tbZv ]px. (1) (1) ]mTt`Zw ˛ _p[x 1. Ghw KpWnXzm kwtbmPy ˛ C{]Imcw KpWn®p In´p∂ c≠p kwJyIfpw Iq´n (CXp Xs∂bmWv XpS°Øn¬ ]d™ tim[y]nfiw) 2. k]vX`n¿KpWtbXv ]px k]vXhnwilrXmx ˛ GgpsIm≠p KpWn®v. Ccp]ØntbgpsIm≠p lcn®m¬. e_v[ h¿jmWn A{X `h¥n ln ˛ In´p∂Xp h¿jw.

A≤ymbw 24 (AjvSIh¿§w ˛ XpS¿®) 533 3. ZzmZimZn KpWtbXv e_v[m amk Al LSnImx ({IamXv) ˛ _m°nbp≈Xns ]{¥≠p sIm≠p s]cp°n Ccp]tØgp sIm≠p lcn®m¬ In´p∂Xp amkw. AXns‚ _m°nsb 30 sIm≠p s]cp°n Ccp]tØgpsIm≠p lcn®m¬ In´p∂Xp Znhkw. Cßs mgnIbpw ImWmw. (Aßns In´p∂ h¿jsØ AXv Ccp]tØgn¬ IqSpXemsW¶n¬) 4. k]vX hnwiXn h¿jmWn aWvUew tim[tbXv ˛ Ccp]tØgp h¿jwsIm≠v B afiesØ tim[n°Ww. GgpsIm≠p s]cp°n Ccp]ØntbgpsIm≠p lcn°¬. Cu A≤ymbØn¬ ]ebnSØpw Cu KWnXw hcp∂p≠v. Hcp {KlØns‚ AjvSh¿§w hmkvXhØn¬ BsIbp≈Xns‚ (Ggp {Klw = 360 Un{Kn ) Ggn¬ Hcp `mKta BIp∂p≈q. Ccp]tØgv £{XkwJybmW.v Ccp]tØgp £{X߃ tNcptºmƒ Hcp afieamIpw. (13˛20 x 27 = 360). tim[y]nfisØ GgpsIm≠p s]cp°ptºmƒ In´p∂ DØcw km[mcW 360 Un{Knbn¬ IqSpXembncn°pw. AXpsIm≠mWv AXns Ccp]Øntbgp sIm≠p lcn°p∂Xv. AXpt]mse lcW^ea√ injvSw hcp∂ kwJybmWv ap°mhiyw. ChnsS Hcp Imcyw {]tXyIw Adnbmp≠v. Cu {InbsNbvXp ap°p In´p∂ h¿jw Nm{μh¿jamWv. AXns kuch¿jam°Wsa¶n¬ 324 (27 x 12) sIm≠p s]cp°n 365 sIm≠p lcn°Ww. CXv {InbbpsS Ahkmw sNbvXm¬ aXn. ImcWw Cu h¿j߃°v GXmpw IrXyam°epIƒIqSn _m°nbp≠v. ChnsS a‰p aq∂p ]Xn∏pIfnepw ImWmØ Hcp t«mIw sImSpß√q¿ ]Xn∏n¬ ImWp∂p≠v. XZq¿t≤z `qan`nx tim≤yw XytPZv `qanw XZq¿≤ztI IpPm[ntI `thZy{X PImt—m[tbØYm. A¿∞w: AjvSh¿§mbp v C{]Imcw IW°m°nbm¬ Ccp]tØgnIØmsW¶n¬ A{Xbpw Xs∂ kzoIcn°Ww. Ccp]tØgn¬ A[nIamsW¶n¬ AºØnmen¬ n∂p Ipdbv°Ww. AºØnmene[nIambm¬ AºØnmep Ipdbv°Ww. F¨]sØm∂ne[nIambm¬ qs‰´n¬n∂p Ipdbv°Ww. hnjbw apIfn¬ ]d™Xp Xs∂ . 10 lcW߃ (29) Atym f ya¿≤lcWw {Klbpt‡ Xp ImctbXv otN f ¿≤akvX(tK)tI f ]y¿≤lcWw tXjp ImctbXv.

^eZo]nI 534 1. Atymyw A¿≤lcWw {Klbpt‡ Xp ImctbXv ˛ ˛ Hcp cminbn¬ H∂ne[nIw {Klßfps≠¶n¬ Hmtcm∂nt‚bpw ]IpXn hoXw Ipdbv°Ww. 2. otN A¿≤akvX(tK)tI A]n A¿≤lcWw tXjp ImctbXv ˛ oNhpw auVyhpap≈ {Kl߃°pw ]IpXn hoXw IfbWw. (30) i{Xpt£t{X {Xn`mtK Zriym¿≤lcWw XYm {XywtimlcWw `wtK kqtcytμzmx ]mXkw{ibmXv. 3 i{Xpt£t{X {Xn`mtK ˛ i{Xpt£{XØn¬ aq∂n¬ H∂v. 4. Zriym¿≤lcWw XYm ˛ Zriym¿≤lcWhpw thWw. (A≤ymbw 22. t«mIw 19 ImWpI) 5. {XywtimlcWw cW`wtK ˛ bp≤Øn¬ tXm‰ {Klw ˛ 1/ 3 `mKw Ipdbv°Ww. 6. kqtcytμzmx ]mXkw{ibmXv ˛ kqcyN{μ∑m¿ ]mXØnemsW¶n¬ 1/ 3 Ipdbv°Ww. (]mXw ˛ {KlWw.) DZmlcWPmXIØn¬ CXp c≠pan√. 1. DZmlcWPmXIØn¬ cNIp_pip ChbpsS ]IpXn Ipdbpw. 2. oNw ˛ C√. auVyw ˛ _p. 1/2 3. i{Xpt£{XÿnXn ˛ kqcy≥ ˛ 1/3 4. Zriyw ˛ C√. 5. {Klbp≤w ˛ C√. 6. {KlWw ˛ C√. (31) _lptXz lctW {]m]vtX ImctbXv _ehØcw ]›mXv XXv kIem≥ IrXzm hcmwtKW hnh¿≤tbXv. (32) amXMvKe_v[w ip≤mbp¿`hXoXn kwibx ]p¿hh±namkm_vZm≥ IrXzm Xky Zim `thXv. 7. _lptXz lctW {]m]vtX ImctbXv _ehØcw ˛ Hcp {KlØnp ]e lcW߃ hcp∂ps≠¶n¬ G‰hpw A[nIap≈Xam{Xw Ipdbv°pI. (H∂ne[nIw kwJy Ipdbv°mps≠¶n¬ G‰hpw IqSpXep≈Xpam{Xw Ipdbv°m≥ n¿Øn _m°nsb√mw IfbWw.) DZm. kqcyv 1/2, 1/3 F∂nßs c≠p lcWßfp≈Xn¬ 1/2 am{Xw Ipd®m¬ aXn .

A≤ymbw 24 (AjvSIh¿§w ˛ XpS¿®) 535 8. ]›mXv XXv kIem≥ IrXzm ˛ ]ns∂ Ahsb F√mw Iq´n hcmwtKW hnh¿≤tbXv ˛ h c K 4 2 3 ˛ 324 sIm≠p KpWn®v amXMvKe_v[w ˛ amXwK ˛ a X K 563 ˛ 365 sIm≠p lcn®m¬ ip≤mbpx `hXn ˛ IrXyamb Bbp v In´pw CXn kwibx ˛ kwibw th≠ . (Nm{μh¿jsØ kuch¿jam°mp≈ {InbbmWnXv) . (33) Ghw {KlmWmw k¿thjmw Zimw Ipcym¬ ]rYIv ]rYIv AjvSh¿KZimam¿Kx k¿thjmapØtamØax Ghw {KlmWmw k¿thjmw ˛ Cßs F√m {KlßfpsSbpw Zimw Ipcym¬ ]rYIv ]rYIv ˛ Zi (Bbp v) thsd thsd ImWWw. {Inbm{Iaw: 1. AjvSIh¿§w ImWpI 2. {XntImW˛GIm[n]Xytim[Iƒ sNøpI 3. _m°n hcp∂Xns cmin˛{KlKpWImc߃sIm≠p s]cp°n, F√mw Iq´n tim≤y]nfiw ImWpI. (DZmlcWPmXIØnse kqcys‚ tim≤y]nfiw 84 (t]Pv 549 ImWpI) 4. CXns GgpsIm.≠p s]mcp°n Ccp]tØgp sIm.≠p lcn°pI. 84 x 7 / 27 = 21.78 5. CXv kqcys‚am{Xw AjvSh¿§mbp mWv. AXpsIm≠#v CXp t]mse a‰v Bdp {KlßfpsS IqSn Bbp¿ h¿jw I≠p Iq´pI 6. Cu Bbp ns apIfn¬ ]d™ mep lcW߃ SØn ip≤am°pI. Cßns In´p∂ h¿jßfmWv AjvSh¿§ ]cambp v. tim[y afiew {Klw ]nfiw {Inb DØcw tim[ _m°n lcWw _m°n kqcy≥ 84 x7/27 21.78 ˛ 21.78 1/2, 1/3 10.89 N{μ≥ 206 53.41 27 26.41 1/2 13,20 IpP≥ 90 23.33 ˛ 23.33 1/2 11.66 _p[≥ 135 35. 27 8. ˛ 1/2, 1/2. 4. ˛ hymgw 163 42.25 27 15.25 15.25 ip{I≥ 104 26.96 ˛ 26.96 1/2 13.48 in 111 28.78 27 1. 78 1.78 BsI 893 231.51 108 123.51 70.26

^eZo]nI 536 70.26 Nm{μh¿jamWv. CXns kuch¿jam°Ww. 70.26 x 324/365 = 62.36 h¿jw. .38 h¿jsØ amkam°ptºmƒ .36 x 12 / 100 = 4.32 amkw. . 56 amksØ Znhkam°ptºmƒ 56 x 30 = 9.6 Znhkw. AjvSIh¿§w Bbp¿±mbw 62 h¿jw 4 amkw 17 Znhkw (CXvv F√m {KlßfpsSbpw Zi tN¿∂XmWv.) AjvSh¿KZimam¿Kx k¿thjmapØtamØax ˛ Cu AjvSh¿KZimcoXn a‰v F√m Bbp¿±mbKWnX kºZmbtØ°mfpw DØaamWv. v.11. kapZmbmjvSh¿§w (34) _mtem _enjvtTm ehWmKtam kptcm cmKo apcmcnx inJco{μKmYbm `utam KtWt{μm eLp `mhXmw kptcm. tKmI¿Æc‡m Xp ]pcmWssaYneo. (35) cp{Z ]cw Klzcss`chÿeo cmKo _eo `mkzcKo¿`KmNemx Kncu hnhkzm≥ _ehZznh£bm iqeo aa {]oXnItcm f {X Xo¿∞IrXv. _mtem _enjvtTm ehWmKtam kptcm 3 3 3 3 2 3 4 5 3 5 7 2 (c˛43) cmKo apcmcn inJco{μKmYbm 2 3 5 2 2 5 2 2 2 3 7 1 (N˛36) `utam KtWt{μm eLp`mhXmw kptcm. 4 5 3 5 2 3 4 4 4 6 7 2 (Ip˛49) tKmI¿Æc‡m Xp ]pcmWssaYneo. 3 1 5 2 6 6 1 2 5 5 7 3 (_p˛46) cp{Z ]cw Klzcss`chÿeo 2 2 1 2 3 4 2 4 2 4 7 3 ( Kp˛36) cmKo _eo `mkzcKo¿`KmNemx 2 3 3 3 4 4 2 3 4 3 6 3 (ip˛40) Kncu hnhkzm≥ _ehZznh£bm 3 24 4 4 3 3 4 4 4 6 1 (a˛42) iqeo aa {]oXnItcm{X Xo¿∞IrXv. 5 3 5 5 2 6 1 2 2 6 7 1 (e˛ 45) 555

A≤ymbw 24 (AjvSIh¿§w ˛ XpS¿®) 537 DZmlcWPmXIØnse kapZmbmjvSh¿§w ta C an I Nn I Xp hr [ a Ipw ao BsI kqcy≥ 2 3 3 3 3 2 3 4 5 3 5 7 43 N{μ≥ 1 2 3 5 2 2 5 2 2 2 3 7 36 IpP≥ 4 5 3 5 2 3 4 4 4 6 7 2 49 _p[≥ 3 3 1 5 2 6 6 1 2 5 5 7 46 Kpcp 2 4 7 3 2 2 1 2 3 4 2 4 36 ip{I≥ 2 3 3 3 4 4 2 3 4 3 6 3 40 in 6 1 3 2 4 4 4 3 3 4 4 4 42 e·w 3 5 5 2 6 1 2 2 6 7 1 5 45 BsI 23 26 28 28 25 24 27 21 29 34 33 39 337 Ign™ A≤ymbØn¬ sImSpØ k¿hmjvSh¿§hpw ChnsS ]dbp∂ kapZmbm jvSh¿§hpw XΩnep≈ hyXymkw BZytØX v{Kl]chpw CXp cmin]chpamsW∂XmWv. BZytØXn¬ k]vX{KlßfpsS _nμp°ƒ 48, 49, 39, 54, 56, 52, 39 F∂ {IaØnemsW¶n¬ CXn¬ 43, 36, 49, 46, 36, 40, 42, 45 F∂ {IaØnemWv hcp∂Xv. DZmlcWw˛˛ c N Ip _p Kp ip a e BsI k¿h 48 49 39 54 56 52 39 ˛˛ 337 kapZmb 43 36 49 46 36 40 42 45 337 a‰p hn[Øn¬ ]d™m¬, BZytØXv {Kl߃°p Xßfn¬n∂pw a‰p {Klßfn¬ n∂pw Hmtcm cminbnepw In´p∂ _nμp°fmWv. c≠matØXv {Kl߃ X߃°pw a‰p {Kl߃°pw sImSp°p∂ , Hmtcm cminbnepw hogp∂, _nμp°fmWv. e·mjvSh¿§w hgnbp≈ Cu hyXymksamgn®m¬ thsd _m°nsb√mw HØp t]mIpw. DZmlcWPmXIØnse kapZmbmjvSh¿§w 556 aow taSw CShw anYpw 39 23 26 28 Ipw`w I¿°SIw 33 BsI 28 aIcw 337 Nnßw 34 25 [p hr›nIwXpemw I∂n 29 21 27 24

^eZo]nI 538 36) k¿hI¿a^temt]Xw AjvSh¿KIapNytX AyYm _ehn⁄mw Zp¿t⁄bw KpWtZmjPw. k¿hI¿a^temt]Xw AjvSh¿KIapNytX˛ F√m I¿Ω^eßfpw kq£vaambn ImWn°p∂XmWv AjvSIh¿§k{ºZmbw AyYm ˛ as‰mcp hn[Ønepw KpWtZmjPw ˛ KqWtZmj^eßsf ImWn°p∂. _ehn⁄mw ˛ {Kl_ehpw cmin_ehpw Zp¿t⁄bw ˛ CXpt]mse Adnbm≥ Ignbn√ .. 12. kapZmbmjvSh¿§^ew (37) {Xnwim[nI^em tb kyq cmibkvtX ip`{]Zmx ]©hnwimXv]cw a≤yw IjvSw XkvamZ[x ^ew. {Xnwim[nI^em ˛ ap∏Xn¬ A[nIw _nμp°fp≈. cmibx ip`{]Zmx ˛ cminIƒ ip`^e{]ZamWv. ]©hnwimXv]cw a≤yw ˛ Ccp]Ønb©v ˛ ap∏Xp _nμp°ƒ a≤yaw. IjvSw XkvamXv A[x ^ew ˛ Ccp]Ønb©n¬ Ipd™m¬ IjvS^ew. (38) a[ymXv^em[nIw emt` em`mXv £oWXtc hytb bky hybm[ntI et· t`mKhm¿Yhm≥ `thXv. a[ymXv ^em[nIw emt` ˛ ]Xnsm∂mw`mhØn¬ ]Ømw`mhØnt°mƒ IqSpX¬ _nμp°ƒ D≠mhpI. em`mXv £oWXtc hytb ˛ ]{¥≠mw`mhØnn¬ ]Xnsm∂mw `mhØn t°mƒ _nμp°ƒ Ipdhmbncn°pI. bky hybm[ntI et· ˛ e·Øn¬ ]{¥≠mw`mhØnnt°mƒ A[nIw _nμp°ƒ D≠mhpI. Cßs h∂m¬. t`mKhm≥ A¿Yhm≥ `thXv ˛ kpJ߃ Ap`hn°p∂hpw [nIpw BIpw.

A≤ymbw 24 (AjvSIh¿§w ˛ XpS¿®) 539 (39) aq¿XymZn hyb`mhm¥w ZrjvSzm `mh^emn ssh A[ntI tim`w hnZym≤ot tZmjw hnn¿ZtiXv. aq¿XymZn hyb`mh¥w ZrjvSzm ˛ e·wapX¬ ]{¥≠mw `mhwhsc. hnebncpØnbn´v. A[ntI tim`w hnZymXv ˛ _nμp°ƒ IqSpXep≈ `mh߃ tim`ambncn°psa∂pw. lot tZmjw ˛ _nμp°ƒ Ipdhp≈ `mh߃ tZmjIcambncn°psa∂pw. `mh^emn ˛ `mh^ew. hnn¿ZtiXv ˛ n¿t±in °Ww. (40) jjvTmjvSahybmwkvXy‡zm titjtjzh {]Iev]tbXv t{ijvTcminjp k¿hmWn ip`ImcymWn ImctbXv. k¿hmWn ip`ImcymWn ˛ F√m ip`Imcyßfpw. jjvTmjvSahybmw Xy‡zm ˛ 6˛8˛12 `mh߃ Ign®v. titjjp ˛ _m°nbp≈hbn¬, t{ijvT cminjp ˛ _nμp°ƒ IqSpXep≈ cminIfn¬. ImctbXv ˛ sNøWw. (41) e·mXv{]`qXn (1) aμm¥taIoIrXy ^emn ssh k]vX`n¿KpWtbX v]›mXv k]vXhnwilrXmX v^ew. (1) ]mTt`Zw ˛ {]`rXn (42) X’amKtX h¿tj ZpxJw hm tcmKam]vpbmXv Ghw aμmZn e·m¥w `uamcmtlzmkvXYm ^ew. e·mXv{]`qXn aμm¥w ˛ e·wapX¬ inhscbp≈ GIoIrXy ^emn ssh ˛ _nμp°sf Iq´n. k]vX`nx KpWtbXvv ˛ GgpsIm≠p s]cp°n. k]vXhnwi lrXmXv ^ew ˛ Ccp]ØntbgpsIm≠p lcn°ptºmƒ In´p∂ kwJybpsS. kamKtX h¿tj ˛ Xpeyamb h¿jØn¬. ZpxJw hm tcmKw B]vpbmXv ˛ ZpJw As√¶n¬ tcmKw D≠mIpw.

^eZo]nI 540 Ghw aμmZn e·m¥w ˛ Cßs in apX¬ e·whscbpw sNøWw. `uam cmtlzm XYm ^ew ˛ insbs°ms≠∂t]mse IpPss°m≠pw cmlphnss°ms≠pw Cßns {Inb sNbvXp Nn¥n°Ww. (43) ip`{KlmWmw kwtbmKx kamm_vtZ ip`w `thXv ]p{XhnØkpJmZon e`tX m{X kwibx. ip`{KlmWmw kwtbmKx kamm_vtZ ip`w `thXv ˛ Cßs ip`scs°m≠p {Inb sNbvXp In´p∂Xnp Xpeyamb h¿jØn¬ . ip`^eap≠mIpw. ]p{XhnØkpJmZon e`tX m{X kwibx. ˛ ]p{X≥, hnØw, kpJw F∂nh e`n°pw. kwibw th≠. (44) kw{KtlW abm t{]m‡ajvSh¿^ew Xznl Xss⁄¿hnkvXcXx t{]m‡ay{X ]Sp_p≤n`nx. kw{KtlW abm t{]m‡w AjvSh¿K^ew ˛ Cßs AjvSh¿§^ew F∂m¬ Npcp°Øn¬ ]dbs∏´p. XXv ss⁄x hnkvXcXx t{]m‡w Ay{X ]Sp_p≤n`nx ˛ Cu hnjbw _p≤nimenIfm¬ AhcpsS {KŸßfn¬ hnkvXcn®p ]dbs∏´n´p≠v.

Add a comment

Related presentations

Related pages

Smashwords – Chapter 24 - Ashtaka varga (contd ...

Chapter 24 - Ashtaka varga (contd) - Phaladeepika (Malayalam) Series: ... Chapter 15 List Price: $5.38 6" x 9" (15.24 x 22.86 cm) Black & White on White paper
Read more

Calaméo - PHALADEEPIKA - Chapter 24/28 - calameo.com

A≤ymbw 24 (AjvSIh¿§w ˛ XpS¿®) 515 Language : Malayalam PHALADEEPIKA (INDIAN ASTROLOGY) CHAPTER TWENTY FOUR ASHTAKA VARGA (contd.) AUTHOR MANTRESWARA ...
Read more

kalachakra - AbeBooks

Brand New Book ***** Print on Demand *****.PHALADEEPIKA CHAPTER 23, 24 Phaladeepika ... (Kalachakra Dasa etc.) 23.Ashtaka varga 24.Ashtakavarga ...
Read more

PHALADEEPIKA - CHAPTER 25 - Education

Phaladeepika chapter 25 for reference purposes. Phaladeepika chapter 25 for reference purposes. Login JOIN. UPLOAD Menu. Categories. Art & Photos; Automotive;
Read more

PHALADEEPIKA - CHAPTER 23 - Education

Phaladeepika chapter 23 for reference purposes. Login JOIN. UPLOAD Menu. ... PHALADEEPIKA - CHAPTER 24. PHALADEEPIKA - CHAPTER 13. PHALADEEPIKA - CHAPTER 19.
Read more

PHALADEEPIKA - 24 by Mullappilly “MP” Thrissur - issuu

Chapter 24. Ashtaka Varga (continued) | Issuu is a digital publishing platform that makes it simple to publish magazines, catalogs, newspapers, books, and ...
Read more

Ashtaka varga system of Prediction: Malayalam / Jyotisham ...

Ashtaka varga system of Prediction: Malayalam / Jyotisham / Phaladeepika Mullappilly Parameswaran Books: Amazon.de: Mullappilly Parameswaran ...
Read more

Mullappilly Parameswaran - Smashwords

Mullappilly Parameswaran. Writer from Kerala, India. Father: Krishnan Elayath Mother: Nangeli Atharjanam Date of birth: 5-5-1946. Has published many ...
Read more