advertisement

Navarra

60 %
40 %
advertisement
Information about Navarra
Entertainment

Published on November 7, 2007

Author: Rosalie

Source: authorstream.com

advertisement

Slide1:  Pierre Auger Observatory for UHE Cosmic Rays Gianni Navarra (INFN-University of Torino) for the Pierre Auger Collaboration XXXXth Rencontres de Moriond ElectroWeak Interactions and Unified Theories La Thuile 5-12th March 2005 • Science Case: the need for Auger • Principles and Advantages of a Hybrid Detector • Present Status of the Observatory • First preliminary Data • Perspectives Pierre Auger Collaboration:  Pierre Auger Collaboration Spokesperson: Alan Watson 16 Countries 50 Institutions ~350 Scientists Italy Argentina Czech Republic Australia France Brazil Germany Bolivia* Greece Mexico Poland USA Slovenia Vietnam* Spain United Kingdom *Associate Countries UHE Cosmic Rays:  UHE Cosmic Rays Eo >1020 eV: 1 part / (km2 century sr)  102 – 103 km2 collecting areas Surface particle detectors UHE Cosmic Rays:  atmospheric fluorescence detectors UHE Cosmic Rays Eo >1020 eV: 1 part / (km2 century sr)  102 – 103 km2 collecting areas Atmospheric fluorescence detectors HiRes vs AGASA:  HiRes vs AGASA AGASA HiReS D. Bergmann ~ 30 % Syst. Error Atmospheric fluorescence detectors Surface particle detectors GZK?:  GZK? Cosmic ray sources are close by (<100 Mpc) Dq ~ degree  Sources !!! Astrophysics? Relic Particles in Galactic Halo ?:  Relic Particles in Galactic Halo ? Mrelic = 1022 eV; SUSY evolution, n-body decay 2 8 16 + Composition (p,…Fe,g,n) + Astronomy (point sources) Sakar & Toldrà, Nucl.Phys.B621:495-520,2002 Toldrà, astro-ph/0201151 Fundamental Physics ? Required to solve EHECR-Puzzle::  Required to solve EHECR-Puzzle: • Better understanding of Syst. Errors • Better Resolution in Energy and Direction • Much more Statistics Hybrid Approach: Independent EAS-observation techniques Shower-by-Shower in one Experiment  Much larger Experiment Slide9:  Atmospheric fluorescence detectors Atmospheric fluorescence detectors UHE Cosmic Rays with Auger Eo >1020 eV: 1 part / (km2 century sr)  102 – 103 km2 collecting areas Surface particle detectors Atmospheric fluorescence detectors Southern Site:  70 km Southern Site Pampa Amarilla; Province of Mendoza 3000 km2, 875 g/cm2, 1400 m Lat.: 35.5° south Surface Array: 1600 Water Tanks 1.5 km spacing 3000 km2 Fluorescence Detectors: 4 Sites 6 Telescopes per site (180° x 30°) 24 Telescopes total View of Los Leones Fluorescence Site:  View of Los Leones Fluorescence Site Six Telescopes viewing 30°x30° each:  Six Telescopes viewing 30°x30° each Slide13:  Schmidt Telescope using 11 m2 mirrors Slide14:  Coihueco (fully operational) Los Leones (fully operational) Aligned Water Tanks as seen from Los Leones:  Aligned Water Tanks as seen from Los Leones Water Tank in the Pampa:  Water Tank in the Pampa Installation Chain:  Installation Chain Southern Site as of Febr. 2005:  650 Water Tanks (out of 1600) + 12 Telescopes Southern Site as of Febr. 2005 Calibration:  Calibration SD Calibration by Single Muon Triggers:  SD Calibration by Single Muon Triggers Agreement with GEANT4 Simulation up to 10  VEM (Vertical Equivalent Muons). VEM ~ 100 PE /PMT Huge Statistics! Systematic error ~5% VEM Peak Sum PMT 1 PMT 2 PMT 3 Local EM Shower SD calibration & monitoring:  SD calibration & monitoring single muons Noise Base-Temperature vs Time Signal-Height vs Time Signal-Height vs Base-Temp Single tank response Huge Statistics! Systematic error ~5% ± 3% FD Calibration :  All agreed within 10% for the EA Alternative techniques for cross checks Scattered light from laser beam Calibr. light source flown on balloon FD Calibration Absolute: End to End Calibration A Drum device installed at the aperture uniformly illuminates the camera with light from a calibrated source (1/month) Relative: UV LED + optical fibers (1/night) N Photons at diaphragm  FADC counts Mirror Camera Calibrated light source Diffusely reflective drum Drum from outside telescope building Atmospheric Monitoring:  Atmospheric Monitoring Balloon probes  (T,p)-profiles LIDAR at each FD building Central laser facility (fibre linked to tank) light attenuation length Aerosol concentration steerable LIDAR facilities located at each FD eye • LIDAR at each eye • cloud monitors at each eye • central laser facility • regular balloon flights Performance demonstrated by First Preliminary Data:  Performance demonstrated by First Preliminary Data Vertical (q~35o) & Inclined (q~72o) :  Vertical (q~35o) & Inclined (q~72o) Energy ~ (6-7) 10 19 eV 35 tanks ~ 13 km 14 km 14 tanks ~ 7 km Young & Old Shower:  Young & Old Shower ‘young’ shower ‘old’ shower Vertical vs Horizontal Showers:  Vertical vs Horizontal Showers ‘young’ showers • Wide time distribution • Strong curvature • Steep lateral distribution ‘old’ showers • Narrow time distribution • Weak curvature • Flat lateral distribution ~ 0.2 µs A Big One: ~1020 eV, q ~60°:  (m) ~11020eV ~1020eV Lateral Distribution Function ~ 14 km ~ 8 km A Big One: ~1020 eV, q ~60° 34 tanks ~60° propagation time of 40 µs EAS as seen by FD-cameras:  EAS as seen by FD-cameras Only pixels with ≥ 40 pe/100 ns are shown (10 MHz FADC  ≤ 4 g/cm2; 12 bit resol., 15 bit dynamic range) Pixel-size = 1.5° ; light spot: 0.65° (90%) 1019 eV events trigger up to ~ 30 km Two-Mirror event EAS as seen by FD-cameras Energy Reconstruction:  Energy Reconstruction Integral of Longitudinal Shower Profile  Energy preliminary ~ 4.8 Photons / m / electron (~ 0.5 % of dE/dx) A Stereo Hybrid; q ~70°:  A Stereo Hybrid; q ~70° Coihueco Fluores. Telescope Los Leones Fluores. Telescope ~8·1019eV Lateral Distribution Function ~37 km ~24km ~70° global view A stereo hybrid; q ~70°:  A stereo hybrid; q ~70° ~37 km ~24km A stereo hybrid; q ~70°:  A stereo hybrid; q ~70° Shower Profile ~7·1019eV (SD: ~8·1019eV) The Power of Hybrid Observations:  The Power of Hybrid Observations The Power of Hybrid Observations:  The Power of Hybrid Observations y Slide36:  Some numbers: data taking from Jan. 2004 SD: number of tanks in operation 650 fully efficient above ~ 3.1018 eV number of events ~ 120,000 reconstructed ( > 3fold, >1018 eV) ~ 16,500 at present ~ 600 events/day FD: number of sites in operation 2 SD+FD: number of hybrids 1750 ~ 350 “golden” Slide37:  Preliminary Sky Plot Auger-S >85o Auger-S >60o no energy cut applied Slide38:  Distribution of Nearby Matter Auger-S >60o Auger-N >60o Jim Cronin, astro-ph/0402487 7-21 Mpc Two Candidate Sites:  Two Candidate Sites AUGER NORTH CONCLUSIONS:  CONCLUSIONS Auger construction in rapid progress in south Physics data taking since January 2004 Stable operation, excellent performance Hybrid approach is a great advantage! Neutrino sensitivity First physics results by summer 2005 Energy spectrum Sky map Auger North proposal in progress Slide41:  Pampa Amarilla Hybrid Reconstruction Quality:  Hybrid Reconstruction Quality 68% error bounds given detector is optimized for 1019eV, but good Hybrid reconstruction quality at lower energy statistical errors only zenith angles < 60O High-Energy Neutrinos in Auger:  High-Energy Neutrinos in Auger  ns expected from distant AGN a/o decay of TDs  X-section @ 1020 eV ≈~10-32 cm2 (Earth opaque for En 1015 eV)  detection by horizontal EAS  If nm  nt Oscillations  advantageous for observation of nt induced Showers n Tests of many AGN & TD Models in range AGN TD LDF in Hybrid Events:  LDF in Hybrid Events • good agreement of SD and FD • good agreement of SD and MC LDF for 1018 eV Showers (Energy from FD) Data points scaled from SD < EFD > = 1.21018 eV Slide45:  Neutrino Sensitivities (per site) X. Bertou et. al. Astropart. Phys. 17 (2002) 183 Expected no. per year  Limit (E-2) for 5 years  Sensitivity e and  Sensitivity High DIS None Slide46:  Integrated Sensitivity of Various Experiments Slide47:  High-Energy Neutrinos in Auger  ns expected from distant AGN a/o decay of TDs  X-section @ 1020 eV ≈~10-32 cm2 (Earth opaque for En 1015 eV)  detection by horizontal EAS  If nm  nt Oscillations  advantageous for observation of nt induced Showers n Neutrino Sensitivity (per flavor)

Add a comment

Related presentations

Related pages

Navarra – Wikipedia

Navarra (spanisch Navarra, baskisch Nafarroa; offiziell: spanisch Comunidad Foral de Navarra, baskisch Nafarroako Foru Komunitatea, deutsch ...
Read more

Königreich Navarra – Wikipedia

Das Königreich Navarra (baskisch Nafarroako Erresuma, französisch Royaume de Navarre, spanisch Reino de Navarra) war ein historischer Staat im westlichen ...
Read more

Offizielle Website Tourismus in Navarra - turismo.navarra.es

Offizielle Tourismus-Website der Region Navarra. Hier finden Sie alle Informationen zu den folgenden Themen: Unterkunft, Landtourismus, Ökotourismus ...
Read more

Urlaub in Navarra in Spanien | Tourismus in Navarra ...

spain.info auf deutsch: Informationen über Navarra in Spanien. Urlaub in Navarra. Sehenswürdigkeiten in Navarra in Spanien, Unterkunft in Navarra ...
Read more

NAVARRA bei Alles über Spanien - red2000.com

Hauptstadt: Pamplona Provinzen: Pamplona Die Geschichte des alten Königreiches Navarra war stets von der Grenzlage zwischen Frankreich, Kastilien, Aragon ...
Read more

Gobierno - navarra .es

navarra.es toda la información, trámites y servicios del Gobierno de Navarra
Read more

Navarra – Wiktionary

Anmerkung zum Artikelgebrauch: Der Artikel wird gebraucht, wenn „Navarra“ in einer bestimmten Qualität, zu einem bestimmten Zeitpunkt oder ...
Read more

Navarre - Wikipedia, the free encyclopedia

Navarre (English / n ə ˈ v ɑːr /; Spanish: Navarra; Basque: Nafarroa; French: Navarre), officially the Chartered Community of Navarre (Spanish ...
Read more

Navarra – Reiseführer auf Wikivoyage

Dieser Artikel ist in wesentlichen Teilen noch sehr kurz und in vielen Teilen noch in der Entwurfsphase. Wenn du etwas zum Thema weißt, sei mutig und ...
Read more

Empleo - navarra.es

Ofertas de empleo y de cursos de formación. Otros servicios online: orientación, oficina electrónica, preinscripciones...
Read more