Nanotechnology for the Environment

50 %
50 %
Information about Nanotechnology for the Environment

Published on November 20, 2009

Author: ankush85


Slide 1: Nanotechnology for the Environment AAAS Environmental Science and Technology Policy Fellow National Center for Environmental Research (NCER) U.S.EPA Slide 2: Nanotechnology and the Environment “The emerging fields of nanoscience and nanoengineering are leading to unprecedented understanding and control over the fundamental building blocks of all physical things. This is likely to change the way almost everything - from vaccines to computers to automobile tires to objects not yet imagined - is designed and made.”  - Interagency Working Group on Nanoscience, Engineering, and Technology Report (1999) Nature of nanoparticles themselves. The bad… As nano-xyz is manufactured, what materials are used? Characteristics of the products made. Manufacturing processes involved. What waste is produced? Are toxic substances used in the manufacturing of nano-xyz? What happens when nano-xyz gets into the air, soil, water, or biota? Slide 3: Cd(CH3)2 H2S gas Cadmium sulfide (CdS) “Quantum dots” Enter the environment Bio/Enviro/other applications + Avoiding the Negative Are there more benign precursor materials or synthetic methods that can be used to make the quantum dots? How are these semiconductor nanoparticles being introduced to their target? Will it be possible to recover the quantum dots for reuse? Are there measures that can be taken now to minimize or avoid the negative impact quantum dots (or other nanotechnologies) may have on the environment? CdS CdS CdS CdS CdS Slide 4: Nanotechnology has the potential to substantially benefit environmental quality and sustainability through Pollution prevention Treatment Remediation Information Nanotechnology and the Environment The good… “As EPA looks to the future, it will need to employ innovative approaches and sound science to investigate complex, interdisciplinary problems in environmental protection.” - EPA FY 2001 Annual Report Slide 5: Involved in making a manufacturing process environmentally benign. An environmentally benign material or manufactured product that replaces toxic substances or minimizes raw materials. Synthetic or manufacturing processes which can occur at ambient temperature and pressure. Nanotechnology for pollution prevention Use of non-toxic catalysts with minimal production of resultant pollutants. Use of aqueous-based reactions. Build molecules as needed --“just in time.” Nanoscale information technologies for product identification and tracking to manage recycling, remanufacture, and end of life disposal of solvents. Slide 6: Biomimetic methods of organizing metal particles 1.5 nanometers in diameter. Biomolecular nanolithography J. E. Hutchison and coworkers, Superlattices and Microstructures, Vol. 00, No. 0,2000 5mm Assembling the particles on a biopolymer template or scaffold stretched out on a surface. Nanostructures are organized into well-defined chip architectures, such as lines and grids. Process eliminates the current process chemicals that are harmful to the environment. Nanoscale assemblies have been made that demonstrate stable, room-temperature electrical behavior that may be tolerant of defects and useful in building nanoscale circuits. Slide 7: End-of-pipe management and cleanup of pollution Treatment & Remediation Iron Treatment Walls… Used in groundwater treatment for many years. Iron chemically reduces organic and inorganic environmental contaminants. Currently involves granular or “microscale” iron ( 50 mm or 50,000 nm). and Nanotechnology Nanosized iron enhances the reaction. Enhanced further by coupling with other metals (Fe/Pd)* on the nanoscale. Nano Fe0 is more reactive and effective than the microscale. Smaller size makes it more flexible -- penetrates difficult to access areas. * Elliot and Zhang ES&T 2001, 35, 4922-4926 Slide 8: Kamat, P.V, et al. J.Phys.Chem. B 2002, 106,788-794. Nanosized zinc oxide (ZnO) “senses” organic pollutants indicated by change in visible emission signal. Sensing capability means that the energy-consuming oxidation stage only occurs when the pollutants present. “Sense and Shoot” Approach to Pollution Treatment The ZnO “shoots” the pollutants via photocatalytic oxidation to form more environmentally benign compounds. Multifunctionality and “smartness” is highly desirable for environmental applications. Dual role of ZnO semicondouctor film as a sensor and photocatalyst >300 nm UV Slide 9: Used for • Process control, compliance and ecosystem monitoring, and data/information interfaces. Sensors Molecules adsorb on surface of micro cantilever, causes a change in surface stress, cantilever bends. IBM--Berger et al., Science 1997 June 27; 276: 2021-2024 Single Molecule Detection Used to detect chemicals using either a specific reaction between analyte and sensor layer or chem/physisorption processes. Applications to bio-toxins as well. Need to be • Low cost, rapid, precise, and ultra sensitive. • Operated remotely and continuously, in situ, and in real time. Slide 10: Science and Engineering approaches are needed that offer new capabilities to prevent or treat highly toxic or persistent pollutants, and that result in the more effective monitoring of pollutants or their impact in ways not currently possible. Conclusions Nanoscience, engineering, and technology holds great potential for the continued improvement of technologies for environmental protection. The recent breakthroughs in creating nanocircuitry, give further evidence and support the predictions that nanoscale science and engineering “will most likely produce the breakthroughs of tomorrow.” BUT the environmental implications (nano in the environment) need to be considered as we consider nano for the environment.

Add a comment

Related presentations

Related pages

Nanotechnology and the Environment - Nanowerk

Introduction to Nanotechnology. Our comprehensive introduction to nanotechnology and nanoscience with lots of information, examples and images
Read more

Environmental Nanotechnology - UnderstandingNano

Environmental Nanotechnology: Duscussion of how nanotechnology is being used to improve the environment. This includes cleaning up existing pollution ...
Read more

Environmental Nanotechnology: Applications and Impacts of ...

by: Mark R. Wiesner, Jean-Yves Bottero Abstract: Create nanomaterials less risky to ...
Read more

Environmental impact of nanotechnology - Wikipedia, the ...

The environmental impact of nanotechnology is the possible effects that the use of nanotechnological materials and devices will have on the environment.
Read more

Nanotechnology | Umweltbundesamt

Nanotechnology for mankind and the environment – Seize upon opportunities, reduce risks. Nanotechnology deals with the production and application of ...
Read more

Nanotechnology and the environment: A mismatch between ...

1 International POPs Elimination Network’s Nanotechnology Working Group Nanotechnology and the environment: A mismatch between claims and reality
Read more

Impact of nanotechnology - Wikipedia, the free encyclopedia

The impact of nanotechnology extends from its medical, ethical, mental, legal and environmental applications, to fields such as engineering, biology ...
Read more

Environmental, Health, and Safety Issues | Nano

With the advent of new technologies, including nanotechnology, one should consider both potential benefits and unintended risks to human health and the ...
Read more

Environment and Nanotechnology - ICE Home Page

Environment and Nanotechnology . By Angela Jones, Ph.D., Jeanne Nye and Andrew Greenberg, Ph.D.
Read more

Nanotechnology (RSC Publishing) - Search Results for RSC ...

Nanotechnology: Consequences for Human Health and the Environment discusses some of the more controversial issues associated with the field including: ...
Read more