advertisement

MVestergaard SantaFe06

50 %
50 %
advertisement
Information about MVestergaard SantaFe06
Entertainment

Published on November 29, 2007

Author: funnyside

Source: authorstream.com

advertisement

A Step Toward Constraining Supermassive Black-Hole Growth Quasar Black Hole Mass Distributions and Mass Functions:  Collaborators: Misty Bentz, Xiaohui Fan, Shai Kaspi, Dan Maoz, Hagai Netzer, Chris Onken, Pat Osmer, Brad Peterson, Rick Pogge, Gordon Richards, Francesco Shankar, Adam Steed, Christy Tremonti, David Weinberg Marianne Vestergaard University of Arizona A Step Toward Constraining Supermassive Black-Hole Growth Quasar Black Hole Mass Distributions and Mass Functions Santa Fe July 12 2006 How Can AGN MBH be Determined?:  How Can AGN MBH be Determined? Stellar kinematics Gas kinematics Reverberation mapping Scaling relationships (√)  (√)  √ √ √ √ Local Universe Higher-z (Note: other secondary mass estimators exist….) Virial Mass Estimates:  MBH = f v2 RBLR/G Reverberation Mapping: RBLR= c τ vBLR Line width in variable (rms) spectrum Virial Mass Estimates  t3 t3 +  Virial Mass Estimates:  Virial Mass Estimates MBH = v2 RBLR/G Reverberation Mapping: RBLR=cτ, vBLR Radius – Luminosity Relation: (Kaspi et al. 2005; Bentz et al. 2006; Vestergaard et al., in prep) Scaling Relationships: MBH  FWHM2 L β RBLR  Lλ(5100Å)0.50 RBLR  Lλ(3000Å)0.50 RBLR  Lλ(1350Å)0.53 Virial Mass Estimates: MBH=f v2 RBLR/G:  2006 Scaling Relationships: (calibrated to 2004 Reverberation MBH) CIV: 1σ uncertainty: factor ~3.5 Hβ: Virial Mass Estimates: MBH=f v2 RBLR/G (see also Vestergaard 2002; MgII : see MV et al. in prep; McLure & Jarvis 2002)   ( Vestergaard & Peterson 2006) NGC 5548:  NGC 5548  Filled circles: 1989 data from IUE and ground-based telescopes.  Open circles: 1993 data from HST and IUE. Dotted line corresponds to virial relationship with M = 6 × 107 M. Highest ionization lines have smallest lags and largest Doppler widths. Peterson and Wandel 1999 R  (M/V) -1/2 Virial Relationships:  Virial Relationships (Peterson & Wandel 1999, 2000; Onken & Peterson 2002) Emission lines: SiIV1400, CIV1549, HeII1640, CIII]1909, H4861, HeII4686 All 4 testable AGNs comply: NGC 7469: 1.2 107 M NGC 3783: 3.0 107 M NGC 5548: 6.7 107 M 3C 390.3: 2.9 108 M Scalings between lines: vFWHM2(H) lag (H) vFWHM2(CIV) lag (CIV) R-L relation extends to high-z and high luminosity quasars: spectra similar (e.g., Dietrich et al 2002) luminosities are not extreme R-L defined for 1042 – 1046 erg/s (Vestergaard 2004) MBH-: Comparison of Active and Quiescent Galaxies:  MBH-: Comparison of Active and Quiescent Galaxies Reverberation masses appear to fall along the MBH -  relation for normal galaxies The scatter is also similar: ≲ a factor of 3 Bulge velocity dispersion (Courtesy C. Onken) RM works!! Mass AGNs Gals Masses of Distant Quasars :  Masses of Distant Quasars Ceilings at MBH ≈ 1010 M LBOL < 1048 ergs/s MBH ≈ 109 M beyond space density drop at z ≈ 3 (H0=70 km/s/Mpc; ΩΛ = 0.7) (Vestergaard 2004) Masses of Distant Quasars :  Masses of Distant Quasars Ceilings at MBH ≈ 1010 M LBOL < 1048 ergs/s MBH ≈ 109 M beyond space density drop at z ≈ 3 (H0=70 km/s/Mpc; ΩΛ = 0.7) (DR3 Qcat: Schneider et al. 2005) Black Holes of Distant Quasars:  Black Holes of Distant Quasars LBOL= BC1 L(1350Å) = BC2 L(4400 Å) Mass LBOL LBOL/LEdd Preliminary Mass Functions of Active Supermassive Black Holes :  Preliminary Mass Functions of Active Supermassive Black Holes Different samples show relatively consistent mass functions (shape, slope, normalization) (Vestergaard & Osmer, in prep.; Vestergaard, Fan, Osmer et al., in prep.) Goal: constrain BH growth (with Fan, Osmer, Steeds, Shankar, Weinberg) (H0=70 km/s/Mpc; ΩΛ = 0.7) BQS: 10 700 sq. deg; B16.16mag LBQS: 454 sq. deg; 16.0BJ18.85mag SDSS: 182 sq. deg; i* 20mag DR3: 5000 sq. deg.; i* >15, 19.1, 20.2 Preliminary Mass Functions of Active Supermassive Black Holes :  Preliminary Mass Functions of Active Supermassive Black Holes Different samples show relatively consistent mass functions (shape, slope) (Vestergaard & Osmer, in prep.; Vestergaard, Fan, Osmer et al., in prep.) Goal: constrain BH growth (with Fan, Osmer, Steeds, Shankar, Weinberg) (H0=70 km/s/Mpc; ΩΛ = 0.7) BQS: 10 700 sq. deg; B16.16mag LBQS: 454 sq. deg; 16.0BJ18.85mag SDSS: 182 sq. deg; i* 20mag DR3: 5000 sq. deg.; i* >15, 19.1, 20.2 Preliminary Mass Functions of Active Supermassive Black Holes :  Preliminary Mass Functions of Active Supermassive Black Holes Different samples show relatively consistent mass functions (shape, slope) (Vestergaard & Osmer, in prep.; Vestergaard, Fan, Osmer et al., in prep.) Goal: constrain BH growth (with Fan, Osmer, Steeds, Shankar, Weinberg) (H0=70 km/s/Mpc; ΩΛ = 0.7) BQS: 10 700 sq. deg; B16.16mag LBQS: 454 sq. deg; 16.0BJ18.85mag SDSS: 182 sq. deg; i* 20mag DR3: 5000 sq. deg.; i* >15, 19.1, 20.2 Preliminary Mass Functions of Active Supermassive Black Holes :  Preliminary Mass Functions of Active Supermassive Black Holes Locally mapped volume (R ≤ 100 Mpc): MBH ≤ 3x109 M SDSS color-selected sample and DR3: (Fan et al. 2001, Schneider et al. 2005) ~9.5 quasars per Gpc3 with MBH ≥ 5x109 M → need ~25 times larger volume locally (R ≤ 290 Mpc) (H0=70 km/s/Mpc; ΩΛ = 0.7) Improving the Scaling Relationships:  Main goal: improve scaling laws by reducing scatter Improving the Scaling Relationships Issues: Host galaxy contamination HST imaging Improved Masses and RBLR Improved monitoring of nearby sources Accuracy of Single-epoch MBH estimates HST & ground-based study R-L relation scatter dominates scatter in mass scaling law Main Results:  Main Results Single-epoch black hole mass MBH estimates Updated calibrations MBH accuracies: ~factor of 4 CIV: Narrow Line Seyfert 1 gals excluded MBH ≈ few 109 M, even at 4 ≲ z ≲ 6 - but they are very rare! Ceilings: LBOL <1048 ergs/s, MBH ≲1010 M Mass Functions - Stay Tuned!

Add a comment

Related presentations