Multirate

50 %
50 %
Information about Multirate

Published on February 7, 2008

Author: aiQUANT

Source: slideshare.net

Multirate Digital Signal Processing Basic rate-changing components: upsampler and downsampler: time domain and frequency-domain models 1

Upsampler: increases the sampling rate by an integer factor L Synonyms: rate expander; expander; oversampler x[n] L xU [n]  x[n / L] n = 0, ± L, ±2 L,... xU [n] =   0 otherwise 2

 x[n / L] n = 0, ± L, ±2 L,... xU [n] =   0 otherwise Upsampling keeps the original samples and introduces L − 1 zero samples between them: x[n] t xU [n] t L=7 3

 x[n / L] n = 0, ± L, ±2 L,... xU [n] =   0 otherwise Upsampling keeps the original samples and introduces L − 1 zero samples between them: x[n] T t xU [n] T′ t T′ = T / L f s′ = Lf s 4

Downsampler: decreases the sampling rate by an integer factor M Synonyms: rate compressor; compressor; undersampler; decimator x[n] M xD [ n ] xD [n] = x[nM ] 5

xD [n] = x[nM ] downsampling keeps the 0th, Mth, 2Mth … original samples and skips the rest: x[n] t xD [ n ] t M =7 6

xD [n] = x[nM ] downsampling keeps the 0th, Mth, 2Mth … original samples and skips the rest: T x[n] t xD [ n ] T′ t T ′ = MT f s′ = f s / M 7

Time- and frequency-domain models  x[n / L] n = 0, ± L, ±2 L,... Upsampler xU [n] =   0 otherwise % % X U ( z ) = X ( z L ) : X U ( f ) = X ( Lf ) Action:Shrinking of the frequency axis by a factor L 8

Time- and frequency-domain models Downsampler xD [n] = x[nM ] M −1 1 X D ( z) = M ∑ k =0 k X ( z1/ M ωM ) : X D ( f ) = ? % Action: complicated 9

Upsampler (incorporating LP Postfilter): increases the sampling rate by an integer factor L Synonyms: rate expander; expander; oversampler; interpolator xU [n] x[n] L LPF xI [ n ] fs f s′ = Lf s f s′ = Lf s  x[n / L] n = 0, ± L, ±2 L,... xU [n] =   0 otherwise n xI [n] = h ∗ xU [n] = ∑ h[n − m]x[m / L] m =0 10 assuming both h and x are causal

Upsampling keeps the original samples and interpolates L − 1 zero samples between them, then lowpass filters the result to remove spectral images: x[n] t xU [n] t xI [ n ] t L=7 11

X(f ) L=2 f − fs − fs / 2 0 fs / 2 fs XU ( f ) Images f − fs − fs / 2 0 fs / 2 fs 12

X(f ) L=2 f − fs − fs / 2 0 fs / 2 fs XU ( f ) Anti-imaging Filter Images f − fs − fs / 2 0 fs / 2 fs XI ( f ) Filtered Images f 13 − fs − fs / 2 0 fs / 2 fs

Downsampler (incorporating LP Prefilter): decreases the sampling rate by an integer factor M Synonyms: rate compressor; compressor; undersampler; decimator xL [ n ] x[n] LPF M xD [ n ] fs fs f s′ = f s / M xL [n] = h ∗ x[n] nM xD [n] = xL [nM ] = ∑ h[nM − m]x[m] m =0 14 assuming both h and x are causal

Downsampling lowpass filters to the OUTPUT half-Nyquist bandwidth, then keeps the 0th, Mth, 2Mth … original samples and skips the rest: x[n] t xL [ n ] t xD [ n ] t 15 M =7

Without lowpass prefiltering aliasing occurs: M =2 X(f ) f − fs − fs / 2 0 fs / 2 fs XD( f ) X ( f / 2 + fs ) X ( f / 2 − fs ) Overlap Overlap f − fs − fs / 2 0 fs / 2 fs Aliasing 16

With lowpass prefiltering aliasing is prevented: M =2 XL( f ) f − fs − fs / 2 0 fs / 2 fs XD( f ) X L ( f / 2 + fs ) X L ( f / 2 − fs ) f − fs − fs / 2 0 fs / 2 fs No Aliasing 17

Some related techniques: •Fractional rate conversion •Multistage upsampling and downsampling •Polyphase FIR filter 18

Fractional rate conversion: R = L/M fs f s′ = Lf s f s′ = Lf s x[n] L LPF xU [n] h1 ∗ xI [ n ] h2 ∗ xIL [n] xI [ n ] LPF M xR [ n ] f s′ = Lf s f s′ = Lf s f s′′ = Lf s / M Now combine the two LPFs 19

Fractional rate conversion: R = L/M fs f s′ = Lf s f s′′ = Lf s / M x[n] L LPF M xR [ n ] h∗ h[ n] = h1 ∗ h2 [n] NB: L and M must be relatively prime, having no common factor (why?) 20

Polyphase FIR filter Example: 11th-order FIR filter, requiring 12 (6 different) coefficients H ( z ) = h[0] + h[1]z −1 + h[2]z −2 + h[3]z −3 + h[4]z −4 + h[5]z −5 + h[5]z −6 + h[4]z −7 + h[3]z −8 + h[2]z −9 + h[1]z −10 + h[0]z −11 H ( z ) = E0 ( z 3 ) + z −1 E1 ( z 3 ) + z −2 E2 ( z 3 ) * where E0 ( z ) = h[0] + h[3]z −1 + h[5]z −2 + h[2]z −3 E1 ( z ) = h[1] + h[4]z −1 + h[4]z −2 + h[1]z −3 E2 ( z ) = h[2] + h[5]z −1 + h[3]z −2 + h[0]z −3 21

x[n] 3 E0 ( z ) + y[n] z −1 3 E1 ( z ) + z −1 3 E2 ( z ) Each of the 3 3rd-order FIR filters requires 4 coefficients, but they all work at the reduced rate, and this is advantageous; e.g. reduced power consumption 22

Question: Apply the symmetry-exploitation trick to the polyphase filter, and redraw the block diagram 23

Add a comment

Related presentations

Related pages

Adaptive Multi-Rate – Wikipedia

Merkmale und Technik. Die gesamte Formatfamilie basiert im Wesentlichen auf Algebraic Code Excited Linear Prediction (ACELP). Adaptive Multi-Rate Wideband ...
Read more

Adaptive Multi-Rate Wideband - Wikipedia, the free ...

Adaptive Multi-Rate Wideband (AMR-WB) Filename extension.awb: Internet media type: audio/amr-wb, audio/3gpp: Type of format: Audio: Standard: ITU-T G.722.2
Read more

Multirate - Numerische Mathematik - UNIVERSITY OF WUPPERTAL

Multiscale Modeling and Multirate Time-Integration of Field/Circuit Coupled Problems
Read more

INfusor-Multirate - Baxter Deutschland - Home

Eine besondere Variante eines INfusor-Multirate stellt der INfusor-RA (Regional-Analgesie) dar: der INfusor-RA ist ein INfusor-Multirate mit zusätzlichem ...
Read more

Multirate - Numerische Mathematik - BERGISCHE UNIVERSITÄT ...

Multiscale Modeling and Multirate Time-Integration of Field/Circuit Coupled Problems
Read more

Multirate Signal Processing - MATLAB & Simulink

Decimation, interpolation, downsampling, upsampling, antialiasing filter ... Resample uniform or nonuniform data to a new fixed rate. Perform decimation ...
Read more

Multirate Switched-Capacitor Circuits for 2-D Signal ...

Bücher bei Weltbild: Jetzt Multirate Switched-Capacitor Circuits for 2-D Signal Processing portofrei bestellen bei Weltbild, Ihrem Bücher-Spezialisten!
Read more

Multirate FAQ | dspGuru.com

Multirate DSP is a fundamental technique of Digital Signal Processing. Here, dspGuru provides "Rarely Given Answers" to "Frequently Asked Questions" about ...
Read more

htp Multirate Connect

Produktdatenblatt htp Multirate Connect Das Produkt htp Multirate Connect stellt eine Alternative zu Dark Fibre dar, das dem Kunden eine gemanagte Punkt-
Read more

Multirate Signal Processing - Technische Universität Ilmenau

Sampling in one and more dimensions (Images...) z-Transforms in multirate systems; Filter banks for coding applications; Polyphase representation; Low ...
Read more