Monografia Grandes Fiisicos Biografia y descubrimientos

62 %
38 %
Information about Monografia Grandes Fiisicos Biografia y descubrimientos
Science

Published on May 10, 2014

Author: katycanta

Source: slideshare.net

Description

Monografia de grandes Físicos de la Antigüedad sus biografías y sus descubrimientos

DEDICATORIA “Esta pequeña monografía sobre los grandes físicos de la la antigüedad, se lo dedicamos a nuestro Profesor, por brindarnos la oportunidad de conocer más, sobre como los antiguos grandes físicos y conocimientos valiosos que nos dejó los grandes personajes respecto a la física, que presentaremos en este trabajo”. 2

INDICE Pág. PORTADA I DEDICATORIA II INDICE II INTRODUCCIÓN IV CAPÍTULO I ARQUIMEDES VI 1.1 Biografía VI 1.2 Leyes de la Hidrostática VII 1.3 Espejos cóncavos IX CAPÍTULO II GALILEO X 2.1 Biografía X 2.2 El movimiento de los cuerpos XI CAPÍTULO III NEWTON XII 3.1 Biografía XII 3.2 Las leyes de la Mecánica 3.3 La Teoría de la Luz y el Color XIV CAPITULO IV EINSTEN XVI 4.1 Biografía XVI 3

4.2 La Teoría de la Relatividad XVII CONCLUSIONES XIX BIBLIOGRAFIA XX 4

INTRODUCCIÓN La presente investigación nos permitirá saber acerca del mundo de los físicos que entregaron su vida a entender los fenómenos realizados trabajando el tema de los grandes físicos de la antigüedad porque es importante saber y conocer acerca de estos físicos famosos que han descubierto cosas que nos sirven para la vida cotidiana para brindarnos conocimientos valiosos sobre los legados que nos han dejado en el tiempo estos grandes físicos como son: Arquimedes,Galileo,Newton,Einsten entrando al mundo de la física que es una ciencia natural muy reconocida y ha contribuido con el desarrollo del hombre gracias a los estudios de los fenómenos que vivimos en nuestras vidas con esta introducción pretendemos atender la atención del lector Y ver a los grandes físicos con una perspectiva más amplia 5

CAPÍTULO I ARQUIMEDES 1.1 Biografía 1.2 Leyes de la Hidrostática 1.3 Espejos cóncavos 1.1 Biografía (Arquímedes. El genio de Siracusa) Es considerado como un gran genio científico y matemático más importante de la Edad Antigua, y uno de los más grandes de toda la historia puede haber tenido. Arquímedes nació en la ciudad de Siracusa en la isla de Sicilia en 287 A.C, dos generaciones después de Euclides se cree que era el hijo de un astrónomo llamado Fidias quien influyo de gran manera en su educación. Aparte de esto, muy poco se sabe sobre la vida temprana de Arquímedes o de su familia los primeros años de su existencia. Algunos mantienen que él Se dice que perteneció a la nobleza de Siracusa, lo que le permitió dedicarse al estudio de esas ciencias. Muchas de sus vivencias, o enseñanzas han llegado hasta nuestros días, al igual que muchos de sus trabajos matemáticos que nos permite tener más conocimiento sobre leyes actuales que fueron creadas en la antigüedad. Fue un genio excéntrico.. Arquímedes viajó hasta esta ciudad y estudió con los discípulos de Euclides, lo cual representó una influencia importante en su forma de entender las matemáticas. 6

El resto de su vida la pasó en Siracusa, dedicado por completo a sus trabajos e investigaciones, con una dedicación y una intensidad tal que. "... se olvidaba de comer y descuidaba su persona, hasta tal punto que, cuando en ocasiones era obligado por la fuerza a bañarse y perfumarse, solía trazar figuras geométricas en las cenizas del fuego y diagramas en los ungüentos de su cuerpo, y estaba embargado por una total preocupación y, en un muy cierto sentido, por una posesión divina de amor y deleite por la ciencia." (Plutarco). En la matemática pura, Arquímedes se anticipó a muchos de los descubrimientos de la ciencia moderna, como el cálculo integral, a través de los estudios de las áreas y volúmenes de las figuras solidas encorvadas y las áreas de las figuras planas, También demostró que el volumen de una esfera es dos-terceras partes del principio de la planicie y se acredita como inventor de la polea compuesta durante su estancia en Egipto. Arquímedes fue muy inteligente un personaje famoso, pero sus logros más importantes los consigue en el terreno de las matemáticas. Fue ésta la ciencia que más le interesó y donde consiguió alcanzar las más altas cumbres. Algunos dicen incluso que su interés por sus descubrimientos más prácticos radica en los principios matemáticos que los mantienen. Él mismo se consideró siempre como un geómetra. Sus trabajos representaron un gran avance, no sólo por los resultados conseguidos, sino por los métodos utilizados, el rigor de sus demostraciones y la solidez de su estructura lógica. Fue precursor de algunos de los descubrimientos de la matemática moderna, como por ejemplo, el uso que hizo del método de exhaución de Eudoxo para calcular áreas y volúmenes, que desembocó casi 2000 años más tarde en el cálculo integral. 1.2 Leyes de la Hidrostática Arquímedes fue llamado por el Rey Herón para solucionar un problema se dice que al Rey Herón le había entregado un platero con una cantidad determinada de oro para hacer una 7

corona cuando se terminó de hacer la corona el platero dijo que había sustituido el oro por una cantidad de plata, devaluando la corona del rey y engañado el rey . El rey le dijo a Arquímedes si había sido engañado. Él tuvo que determinar si el joyero había extraído oro. Entonces fue así que Arquímedes estuvo bañándose en una tina muy llena de agua, al sumergirse en ella, parte del agua se derramo. Arquímedes descubrió que estoy podría ayudar a resolver el gran problema así que salió desnudo corriendo diciendo: ¡Eureka, eureka! El principio de Arquímedes dice que estando un cuerpo sumergido TOTAL o parcialmente en un fluido en reposos experimenta una fuerza en dirección vertical hacia arriba de parte del fluido llamado E E = V sumergido · d líquido · g E, empuje (N) V sumergido, Volumen del cuerpo sumergido (m^3) d líquido, Densidad del líquido (kg/m^3) RECUERDA: LA DENSIDAD DEL AGUA PURA ES 1000 kg/ m^3 g, Gravedad (9.8 m/ s^2) 8

1.3 ESPEJOS CONCAVOS Cualquier rayo que incida sobre el espejo se reflejará y pasará por el punto focal. El rayo incidente que pase por el foco se reflejará en una dirección paralela al eje principal. Objetivos: Encontrar centro de curvatura y foco Materiales: espejo cóncavo, papel, lápiz, alfiler, regla, compás Descripción de la experiencia: En primer lugar medimos el largo del espejo y lo dibujamos, luego trazamos dos tangentes con sus respectivas perpendiculares y donde se encontraron las dos perpendiculares encontramos el centro de curvatura “C” Para encontrar el foco colocamos un alfiler frente al espejo, del cual salían dos rayos que incidían en el espejo y luego se reflejaban. Posteriormente prolongamos los rayos reflejados y en el punto donde se encuentran es el foco “F” Procesamiento de datos: Medida del espejo: Distancia de C al espejo: Distancia de F al centro: 9

CAPÍTULO II GALILEO GALILEI 2.1Biografía 2.2Estudio de los movimientos de los cuerpos 2.1 Biografía Galileo nació el 15 de febrero de 1564, dedicando su vida al estudio de la Hidrostática, la Astronomía y al movimiento e equilibrio de los cuerpos; así mismo se le considera el fundador de las ciencias de la Dinámica y la Resistencia de Materiales. Se dice que fue el padre de la metodología de la Ciencia y se le considera uno de los mejores prosistas de la Italia del siglo XVII. Su ubicación histórica lo reconoce como un hombre mitad en el Renacimiento y mitad en la época científica moderna. Fue un ferviente seguidor de tomar la experiencia como piedra angular de la 10

investigación de la naturaleza, aunque no fue un experimentador cuidadoso. Escribió varios libros, de los cuales del último, "Diálogos acerca de dos Nuevas Ciencias" se considera su obra maestra. Pudiera afirmarse que Galileo Galilei fue el protagonista del acto final de la lucha que durante 2000 años había librado la ciencia en formación contra las cosmologías sobrenaturales establecidas. propias afirmaciones al referirse a su último libro: "esta obra es apenas el comienzo, vías y medios por los cuales otras mentes más agudas que la mía exploraran los rincones más remotos de la naturaleza". 2.2 Estudio de los movimientos de los cuerpos ¿Qué es la caída libre? Caída libre es el movimiento de un objeto o cuerpo en donde no existe resistencia de algún medio. En el movimiento de la caída libre de los cuerpos intervienen varios factores que son: la forma del cuerpo y el medio por el que se desplaza (En el aire, agua, etc.) si se elimina el medio de resistencia, por ejemplo el aire, y se arroja una pelota y una pluma de un ave, ambos objetos caerán al mismo tiempo sin importar su peso, ya que no existe resistencia alguna sobre éstos. Desde joven Galileo se dio cuenta que la Ley de Aristóteles de la caída de los cuerpos no parecía encajar esto llevo a llenarse de dudas entre el de esta manera estudio la caída de los cuerpos. Galileo mando a construir un ratil de madera de siete metros muy bien pulido para que se pudiera tirar bolas y estudiar el movimiento 11

Invento así el método científico, ya que hizo la investigación donde se: Observaba, luego formulaba, hipótesis, experimentación y conclusiones, pero no aplico este método a la caída de los cuerpos. Asi que hizo un experimento con un péndulo Tras mucho tiempo de experimentos y tomando datos, Galileo se dio cuenta que había tres tipos de movimientos: Movimiento Rectilíneo Uniforme, Movimiento Circular y el Movimiento Rectilíneo Uniformemente Variado Concluyo que la masa es independiente a la velocidad su único error fue decir que dos objetos de distinta masa y tamaños caerían a la ves y no tomo en cuenta el aire Uno de los grandes aportes que hay en la Física, es sin duda alguna el que realizó el científico Galileo Galilei Esto lo pudo comprobar con su experimento realizado desde la Torre de Pisa. Galileo arrojó dos objetos de diferente peso y mostró que caían al mismo tiempo. CAPÍTULO III NEWTON 12

3.1Biografía 3.2 Las leyes de la mecánica 3.3La teoría de la luz 1.1 Biografía Nació el 25 de diciembre de 1642 en Woolsthorpe, Lincolnshire, Hijo póstumo y único de una familia de agricultores. Su pequeño tamaño y delicado estado hacen temer sobre su suerte aunque finalmente sobrevive. Desde joven apareció como "raro " aunque lleno de imaginación. Se entretenía construyendo artilugios: un molino de viento, un reloj . Cursó estudios en la escuela primaria en Grantham. En 1661, ingresó en el Trinity College de la Universidad de Cambridge, donde estudió matemáticas bajo la dirección del matemático Isaac Barrow. Recibió su título de bachiller en 1665 y le nombraron becario en Trinity College en 1667. Desde 1668 fue profesor. Newton se dedicó al estudio e investigación de los últimos avances en matemáticas y a la filosofía natural. La manzana de newton 13

En el verano de 1666 se encontraba sentado en un árbol y cayo una manzana entonces pensó: porque tiene que caer la manzana siempre perpendicularmente en el suelo … La razón era que la Tierra la atrae Isaac Newton falleció el 31 de marzo de 1727 en Londres tras un brusco empeoramiento de su afección renal. Reposa en la abadía de Westminster. Dejó una cuantiosa colección de manuscritos. Los investigadores descubrieron miles de folios conteniendo estudios de alquimia, comentarios de textos bíblicos, así como cálculos herméticos oscuros e ininteligibles. 3.2Las leyes de la mecánica Las leyes de Newton también conocidas como leyes del movimiento o leyes de la mecánica son tres principios los cuales se explican la mayor parte de los problemas planteados por la dinámica en si el movimiento relativos de los cuerpos 3.2.1 Primer Ley de Newton o ley de la Inercia 14

Un cuerpo permanecerá en un estado de reposo o de movimiento uniforme, a menos de que una fuerza externa actúe sobre él. La primera ley de Newton, conocida también como Ley de inercia, nos dice que si sobre un cuerpo no actúa ningún otro, este permanecerá indefinidamente moviéndose en línea recta con velocidad constante (incluido el estado de reposo, que equivale a velocidad cero). Como sabemos, el movimiento es relativo, es decir, depende de cual sea el observador que describa el movimiento. Así, ejemplo, para un pasajero de un tren, el interventor viene caminando le 3.2.2 LA SEGUNDA LEY DE NEWTON Siempre que una fuerza actúe sobre un cuerpo produce una aceleración en la dirección de la fuerza que es directamente proporcional a la fuerza pero inversamente proporcional a la masa. La Segunda ley de Newton se encarga de cuantificar el concepto de fuerza. Nos dice que la fuerza neta aplicada sobre un cuerpo es proporcional a la aceleración que adquiere dicho cuerpo. La constante de proporcionalidad es la masa del cuerpo, de manera que podemos expresar la relación de la siguiente manera: F = m a Tanto la fuerza como la aceleración son magnitudes vectoriales, es decir, tienen, además de un valor, una dirección y un sentido. De esta manera, la Segunda ley de Newton debe expresarse como: 3.2.3 TERCERA LEY DE NEWTON A toda acción corresponde una reacción en igual magnitud y dirección pero de sentido opuesto. 15

Tal como comentamos en al principio de la Segunda ley de Newton las fuerzas son el resultado de la acción de unos cuerpos sobre otros. La tercera ley, también conocida como Principio de acción y reacción nos dice que si un cuerpo A ejerce una acción sobre otro cuerpo B, éste realiza sobre A otra acción igual y de sentido contrario. Esto es algo que podemos comprobar a diario en numerosas ocasiones. Por ejemplo, cuando queremos dar un salto hacia arriba, empujamos el suelo para impulsarnos. La reacción del suelo es la que nos hace saltar hacia arriba. Cuando estamos en una piscina y empujamos a alguien, nosotros también nos movemos en sentido contrario. Esto se debe a la reacción que la mueve. 3.3La teoría de la luz Así realizo un conocido experimento, con prismas de vidrio transparentes, con caras no paralelas donde ocurre una doble refracción. En primera instancia, utilizó solo un prisma. Ubicó el prisma en un cuarto oscuro, en el cual entra un haz de luz blanca y atraviesa un trozo de cristal con caras planas, que no son paralelas. Al entrar y salir de este, la luz sufre una doble refracción. La luz se recoge en una pantalla, y lo que se obtiene es un haz que tiene todos los colores naturales del arcoíris separados, el rojo, naranja, verde, azul, azul, violeta. 16

Newton, para tratar de demostrar su hipótesis, hizo dos experimentos más: El primero consistió en añadir otro prisma, en forma invertida, con lo que concluyó que el has de luz se vuelve a unir para formar otra vez la luz blanca, igual como se ve en la siguiente imagen: "La luz descompuesta en el primer prisma, se vuelve a juntar en el segundo invertido, para formar el haz de luz blanco de nuevo". El "Disco de Newton", es el segundo experimento. Es un disco o ruleta que está dividida en siete partes, las cuales están pintadas con un color del arcoíris distinto. Al girar este, a gran velocidad, la apariencia de la ruleta es blanca. CAPÍTULO IV EINSTEN 4.1 Biografía 4.2 Teoría de la Relatividad 4.1 Biografía Físico alemán nacionalizado estadounidense, premiado con un Nobel, famoso por ser el autor de las teorías general y restringida de la relatividad y por sus hipótesis sobre la naturaleza corpuscular de la luz. Es probablemente el científico más conocido del siglo XX. Nació el 14 de marzo de 1879 en Ulm, Württemberg, Alemania y pasó su juventud en Munich, donde su familia poseía un pequeño taller de máquinas eléctricas. Ya desde muy joven mostraba una curiosidad excepcional por la 17

naturaleza y una capacidad notable para entender los conceptos matemáticos más complejos. A los doce años ya conocía la geometría de Euclides.. En 1901, año en que obtuvo su diploma, que adquirió la nacionalidad suiza y, como él no fue capaz de encontrar un puesto de enseñanza, él aceptó una posición como asistente técnico en la Oficina Suiza de Patentes. Después de la Segunda Guerra Mundial, Einstein era una figura prominente en el Movimiento de Gobierno Mundial, se le ofreció la presidencia del Estado de Israel, que se negó, y colaboró con el Dr. Chaim Weizmann en el establecimiento de la Universidad Hebrea de Jerusalén. Einstein siempre parecía tener una visión clara de los problemas de la física y la determinación para resolverlos. Tenía una estrategia propia y era capaz de visualizar las principales etapas en el camino hacia su meta. Consideraba sus principales logros como meros peldaños para el siguiente avance. Al comienzo de su trabajo científico, Einstein se dio cuenta de las insuficiencias de la mecánica de Newton y su teoría de la relatividad especial surgió de un intento de reconciliar las leyes de la mecánica con las leyes del campo electromagnético. Él se ocupó de los problemas clásicos de la mecánica estadística y problemas en que se fusionaron con la teoría cuántica: esto dio lugar a una explicación del movimiento browniano de las moléculas días en Berlín, Einstein. Murió el 18 de abril de 1955 en Princeton, Nueva Jersey. 4.2 Teoría de la Relatividad 4.2.1Relatividad especial , Fue publicada por Albert Einstein en 1905 y describe la física del movimiento en el marco de un espacio-tiempo plano. Esta teoría describe correctamente el movimiento de los cuerpos incluso a grandes velocidades y sus interacciones electromagnéticas y se usa básicamente para estudiar sistemas de referencia inerciales (no es aplicable para problemas astrofísicos donde el campo gravitatorio desempeña un papel importante. Tras la publicación del artículo de Einstein, la nueva teoría de la relatividad especial fue aceptada en unos pocos años por la práctica totalidad de los físicos y los matemáticos. y el tiempo. En este espacio-tiempo de vacío. 18

Relatividad general La relatividad general fue publicada por Einstein en 1915, y fue presentada como conferencia en la Academia Ciencias Persunias el 25 de noviembre. La teoría generaliza el principio de relatividad de Einstein para un observador arbitrario. Esto implica que las ecuaciones de la teoría deben tener una forma de covariancia más general que la covariancia de Lorentz usada en la teoría de la relatividad especial. Además de esto, la teoría de la relatividad general propone que la propia geometría del espacio-tiempo se ve afectada por la presencia de materia, de lo cual resulta una teoría relativista del campo gravitatorio. De hecho la teoría de la relatividad general predice que el espacio-tiempo no será plano en presencia de materia y que la curvatura del espacio-tiempo será percibida como un campo gravitatorio. Einstein expresó el propósito de la teoría de la relatividad general para aplicar plenamente el programa de Ernst Mach de la relativización de todos los efectos. 19

CONCLUSIONES Este trabajo como el titulo lo indica pretende mostrar las aplicaciones e invento de los grandes físicos de la antigüedad en todo su esplendor y conocimiento nuestra intención fue haber mantenido la visión amplia de los físicos que gracias a sus trabajos o los fenómenos descubiertos nos ayudan a mejor nuestra vida día a día pidiendo facilitarnos la vida. BIBLIOGRAFIA 20

*Arquímedes de Siracusa http://centros5.pntic.mec.es/ies.de.bullas/dp/matema/conocer/arquimedes.htm Arquímedes disponible en CENTRO 5 Panics Consultada en Abril del 2014 *Galileo Galilei http://www.buscabiografias.com/bios/biografia/verDetalle/6538/Galileo%20Galilei Galileo Galilei disponible en BUSCABIOGRAFIAS 4 Consultado Abril del 2014. -Newton y leyes dinámicas http://www.astromia.com/biografias/newton.htm Newton y leyes dinámicas en Astronomía newton Consultado Abril del 2014 *Matemáticos y científicos Famosos, Disponible en http://www.rincondelvago.com consultada en Marzo de 2012. Matemáticos, Disponible en Sitio Buenas tareas consultada en Marzo de 2012 Matemáticos y científicos, Disponible en http://www.wikipedia.com consultada en Abril del 2014 Científico Alemán Albert Einstein http://www.andina.com.pe/agencia/noticia-un-18-abril-murio-fisico-y-cientifico-aleman-albert-ei- 502623.aspx#.U1Qyn1V5N9s Albert Einstein en Andina Noticia Consultada en Abril del 2014 21

Add a comment

Related presentations

How organisms adapt and survive in different environment.

Aplicación de ANOVA de una vía, modelo efectos fijos, en el problema de una empres...

Teori pemetaan

Teori pemetaan

November 10, 2014

learning how to mapping

Libros: Dra. Elisa Bertha Velázquez Rodríguez

Materi pelatihan gis

Materi pelatihan gis

November 10, 2014

learning GIS

In this talk we describe how the Fourth Paradigm for Data-Intensive Research is pr...

Related pages

Alexander Fleming - Wikipedia, la enciclopedia libre

descubrimiento de la lisozima y la penicilina: Sociedades: Royal Society de Londres. Presidente de la Sociedad General de ... Por sus descubrimientos, ...
Read more

Los cientificos más importantes de la historia - YouTube

Los cientificos más importantes de la historia ... 1 Grandes Genios e Inventos de la ... DESCUBRIMIENTOS EXTRAÑOS Y MISTERIOSOS 2015 ...
Read more

Louis Pasteur - Wikipedia, la enciclopedia libre

... fue un químico francés cuyos descubrimientos tuvieron enorme ... sus ensayos y descubrimientos, ... Biography 10 , Charles Scribner ...
Read more

Alejandro Volta: Biografía e inventos - Overblog - Los ...

... Volta fue un científico italiano cuyas contribuciones fueron claves para la ciencia en el ámbito de la electricidad y las ... descubrimientos que ...
Read more

Biografías de Grandes Científicos - El Portal Educativo ...

Biografías de Grandes Científicos. Proyecto Salón Hogar Clasicos . Aristoteles ... Física y Matemáticas . Avogadro Bohr Curie Einstein, Albert
Read more

3º Medio. Grandes Descubrimientos. Portugueses Y ...

Monografia Grandes Fiisicos Biografia y descubrimientos ... LOS SETENTA GRANDES INVENTOS Y DESCUBRIMIENTOS DEL MUNDO ANTIGUO Contenido ...
Read more