Moletronics

67 %
33 %
Information about Moletronics
Education

Published on February 1, 2014

Author: rajanpagotra

Source: slideshare.net

Different scales of Silicon Integration Technology Integration Type No. of components used on single chip SSI (small scale integration) 1-12 MSI (medium scale integration) 12-30 LSI (large scale integration) 30-300 VLSI (very large scale integration) 300-10000 ULSI (ultra large scale integration) beyond 10000

MOORE’S LAW Moore wrote in his original paper entitled ‘Cramming More Components Onto Integrated Circuit ’, “The complexity for minimum component costs has increased at the rate of roughly a factor of 2 per year. Certainly, over the short term, this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe that it will not remain constant for at least ten more years.”

MOLECULAR ELECTRONICS IS THE ONLY SOLUTION

BACKGROUND:

SUBSTRATES USED UNDER THIS TECHNOLOGY

ORGANIC POLYMERS  Discovered in mid 1970’s.  Polymers are flexible, versatile and easy to process.  Behave like a conventional inorganic semiconductor.  Does not possess reasonable charge carrier mobility. Mobility obtained in polymers is rather low.  Does not demonstrate the existence of controllable band gap of the order of 0.75 to 2 e V.

TYPICAL RESISTIVITY

POLYPHENYLENE BASED CHAINS  They are capable of carrying currents.  They are also capable of switching small currents.  Thus, they are used as molecular wires and switches.  The current that passes through the molecular-wires is about 30 A, or about 30 n A per molecule.  This works out to about 200 billion electrons per second being transmitted across the short polyphenylene-based molecular wire.

POLYPHENYLENE BASED CHAINS Fig. (a) Alkyldithiol; (b) Oligo(p-phenylene)-dithiol; (c) (p-phenylene ethynylene)-dithiol.

CARBON NANOTUBES  A second type of molecule that can be used as molecular wires is the carbon nanotube or “bucky tube”.  When used on micropatterned semiconductor surfaces, these nanotube structures make a very conductive wire.  They differ in diameters and chiralities and come in a range of conductive properties ranging from excellent conduction to pretty good insulation.  The most flexible polyphenylene backbone, is not the most conductive and the most conductive, the carbon nanotube, is not the most flexible chemically.

Carbon nanotubes: their structure

MOLECULAR ELECTRONIC COMPONENTS

MOLECULAR TRANSISTORS  Prof. Francis Garnier and co-workers, in 1990 developed a total organic transistor known as organic FET.  The transistor is a metal insulator semiconductor structure comprising an oxidized silicon substrate and a semiconductor polymer layer.  It has great flexibility and can even function when it is bent.

Diode Switches  A diode is a two terminal device in which current may pass in one direction through the device, but not the in the other direction, and in which the conduction of current may be switched on or/off.  Two important types of molecular-scale diode switches have been demonstrated: rectifying diodes and resonant tunneling diodes.

Rectifying Diodes  Rectifying diodes, also called molecular rectifiers, use structures that make it more difficult for an electric current to go through them in one direction, usually termed “reverse” direction, than it is to go the opposite “forward” direction.  Rectifying diodes have been elements of analog and digital circuits since the beginning of the electronic revolution.  The first theoretical paper on molecular electronics was a paper entitled “Molecular Rectifiers” by A. Aviram and M.A. Ratner that appeared in the journal Chemical Physics Letters in November 1974.

Resonant Tunneling Diodes (RTDs)  The RTD uses electron energy quantization to permit the amount of voltage bias across the source and drain to control the diode so as to switch current on and off, and so as to keep electrical current going from the source to the drain.  An experimental RTD of a working electronic device has been recently synthesized by Tour and demonstrated by Reed.  The device is a molecular analog of a larger solid-state RTD that has commonly been fabricated in III-V semiconductors and used in solid-state, quantum-effect circuitry.

REALIZATION OF BASIC CIRCUITS

Similarly following basic circuits can be derived from the above circuits  Molecular XOR Gates Using Molecular RTDs and Rectifying Diodes  Molecular Electronic Half Adder  Molecular Electronic Full Adder  Combining Individual Devices

CHARACTERISTICS OF MOLECULAR DEVICES

 Nonlinear I-V Behavior  Energy Dissipation  Gain in Molecular Electronic Circuits  Speeds

Advantages of Molecular Electronics

 Size  Power  Assembly  Manufacturing Cost  Low Temperature Manufacturing  Stereochemistry  Synthetic flexibility

MOLETRONICS ROADBLOCKS

 i) Molecular electronics must still be integrated with       Silicon. ii)The determination of the resistance of a single molecule. iii) It is difficult to perform direct characterization . iv) Interconnection of two components at molecular level also creates hindrances. v) One of the biggest problems is with measuring on single molecules. vi) Another big hindrance is to connect a molecular sized circuit to bulk electrodes in a way that gives reproducible results. vii) Also problematic is the fact that some measurements on single molecules are carried out in cryogenic temperatures (close to absolute zero) which is very energy consuming.

Techniques for electrical characterization of molecules

Various techniques to measure electronic properties of molecules. (A) Hg drop junction. (B) Mechanically controlled break junctions. (C) Nanopore. (D) Nanowire. (E) Nanoparticle bridge. (F) Crossed wires. (G) STM. (H) Contact CP-AFM. (I) Nanoparticle coupled CP-AFM.

FUTURE DEVELOPMENTS & CONCLUSION

“The Next Big Thing is very, very small. Picture trillions of transistors, processors so fast their speed is measured in terahertz, infinite capacity, zero cost. It's the dawn of a new technological revolution - and the death of silicon.”

Add a comment

Related presentations

Related pages

Moletronics: future electronics - ScienceDirect

Another linchpin of the Moletronics R&D effort is an interdisciplinary team led by R. Stanley Williams and Philip J. Kuekes of Hewlett-Packard Corp. (HP ...
Read more

Moletronics- Technology After ULSI | Mepits

Moletronics- Technology After ULSI. Moletronics is also called as molecular electronics. From the name itself, it is clear that moletronics is the ...
Read more

MOLETRONICS – An Invisible Technology

5 3. Introduction Molecular electronics, also called moletronics, is an interdisciplinary subject that spans chemistry, physics and materials science.
Read more

Molecular electronics - Wikipedia

Molecular electronics is the study and application of molecular building blocks for the fabrication of electronic components. It is an interdisciplinary ...
Read more

Moletronics - definition of Moletronics by The Free Dictionary

A branch of electronics in which molecules are engineered and arranged so that their electrical properties allow them to be used as individual ...
Read more

MOLETRONICS - Scribd

MOLETRONICS- an invisible technology. ABSTRACT Semiconductor integration beyond Ultra Large Scale Integration (ULSI), through conventional electronic ...
Read more

Moletronics | definition of Moletronics by Medical dictionary

Disclaimer. All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only.
Read more

MOLETRONICS - scribd.com

MOLETRONICS - Free download as Powerpoint Presentation (.ppt), PDF File (.pdf), Text File (.txt) or view presentation slides online. ppt on molecular ...
Read more

Moletronics | Article about Moletronics by The Free Dictionary

The use of biological or organic molecules for fabricating electronic materials with novel electronic, optical, or magnetic properties, applications ...
Read more