molecular basis diseases II

50 %
50 %
Information about molecular basis diseases II

Published on February 25, 2008

Author: Renato


Slide1:  Dr. Fahd Al-Mulla ©2007 Slide2:  Understand that diseases (in most cases) are phenotypic representation of proteins quality and quantity disorders, either at DNA, transcriptional, translational or post translational levels Understand the molecular and cellular basis of common diseases: Genetic disorders (Down’s, heamoglobinopathies, Cancer) Metabolic disorders (see clinical chemistry lectures) Ion channels disorders (Cystic Fibrosis, Arrythmias) Trafficking disorders (Familial Hypercholesterolemia) Signaling disorders (Diabetes Mellitus) Structural proteins defects (Osteogenesis Imperfecta) Microbial virulence and Immune response. Define and describe the disciplines of molecular biology, molecular pathology and molecular genetics Comprehend that understanding the molecular and cellular basis of diseases leads to more comprehensive diagnosis, prognosis, tailored therapies and potential cures. Examples, STI571 uses in CML, Genetherapy. What is Disease:  What is Disease dis·ease (dĭ-zēz') n. A pathological condition of a part, organ, or system of an organism resulting from various causes, such as infection, genetic defect, or environmental stress, and characterized by an identifiable group of signs or symptoms. A condition or tendency, as of society, regarded as abnormal and harmful. Obsolete. Lack of ease; trouble. Part of your job is to build good experience in associating symptoms and signs with disease names. This is an art and you have to be good at it. Once you become proficient, you will think: What caused the disease? Endogenous reaction/defect or exogenous factor(s) How do I diagnose it What is the molecular basis for the disease? Why do diseases behave differently in different people? Slide4:  Molecular Basis Of Diseases Environment And genes Changes an Enzyme e.g. Phenylalanine hydroxylase Splice site mutation leading to reduced amount Causing phenylketonuria Changes an Enzyme inhibitor e.g. 1-Antitrypsin Missense mutation that impair secretion from liver To serum causing Emphysema and Liver disease Changes a receptor e.g. Low density lipoprotein receptor Deletion or point mutation that reduce synthesis, Or transport to the cell surface or binding to low density lipoprotein Causing Familial hypercholesterolemia Change a transport or carrier protein 1.e.g. Haemoglobin Mutations in splice sites (commonest) leading to Reduced -globin.causing -Thalassemia in -Thalassemia the -globin gene is usually deleted 2.e.g. Cystic fibrosis transmembrane conductance Regulator. Deletions or point mutation causing Cystic fibrosis. Changes in Hemostasis e.g. Factor VIII deletions, insertions, nonsense Mutation reduce synthesis or abnormal factor VIII Causing Hemophilia A. Changes in structural Proteins 1.e.g. collagen, Deletions Or point mutation that Produce reduced amount Of normal collagen or Normal amounts of mutant Collagen. Causing Osteogenesis imperfecta 2.e.g cell membrane Fibrillin Missense mutations causing Marfan syndrome Or deletion of dystrophin gene Causing Duchene muscular Dystrophy Growth regulation e.g.Rb causing Retinoblastoma etc What is Molecular Pathology? :  What is Molecular Pathology? Pathology: is the study of diseases. Molecular biology: the study of molecules in biological systems that are responsible for normal biological traits or behaviors i.e.: DNA replication, transcription and translation in normal cells. Molecular pathology: an evolving field that examines and identifies the molecules involved in specific diseases. Integrates knowledge and techniques applied in molecular biology to pathology. Molecular Pathology: Rationale:  Molecular Pathology: Rationale Classical pathologists examine tissue sections stained with Haematoxilin and Eosin (H&E) and other stains, and is able to know the issues origin, organization and what disease it represents. However, this is an art involving human skill, not science. A pathologist is unable to define the molecules and how they interact to produce the disease represented by what is observed microscopically. This is the job of a molecular pathologist. The molecular pathologist utilizes techniques from molecular biology to study differences between normal and diseased tissue at the molecular level, so that the specific molecules associated with the disease maybe identified. We work as members of multidisciplinary team Who is a molecular geneticist? Clinical geneticist? Relevance of Molecular Pathology:  Diagnosis: Looking at the disease from the small molecules point of view Elucidates the causes of the disease (viruses, hereditary, disruptions of the normal control processes, such as the cell-cycle, apoptosis etc…) Provides a more comprehensive understanding of a disease, it’s natural history, and progression. Provides an understanding of the overall complexity of the disease. Prognosis: Associates specific molecules or a set of molecules with the probable outcome of a disease. Treatment Enables new treatment modalities for specific diseases. The concept of custom/tailored therapy Relevance of Molecular Pathology Slide8:  Example of Diagnostic powers of Molecular Pathology Sickle cell anaemia Slide9:  Sickle cell anaemia Power of Molecular Pathology:  Power of Molecular Pathology What is the importance of knowing the mutation for the patient and the offspring? PGD Other examples of uses of Molecular Pathology in diagnosis:  Other examples of uses of Molecular Pathology in diagnosis Bladder Cancer FISH NORMAL Bladder Ca Prognosis and Molecular Pathology:  Prognosis and Molecular Pathology 1 year 1 year metastases 5-years Al-Mulla F, Hagan S, Behbehani AI, Bitar MS, George SS, Going JJ, Garcia JJ, Scott L, Fyfe N, Murray GI, Kolch W. Raf kinase inhibitor protein expression in a survival analysis of colorectal cancer patients. J Clin Oncol. 2006 Dec 20;24(36):5672-9. al-mulla Mod pathol 2006 WHY DO SOE PEOPLE WITH THE SAME CANCER TYPE AND STAGE HAVE DIFFERENT PROGOSIS? Slide13:  If we have learned something from the 1990 is that cancer is a genetic disease requiring a Large number of genetic alterations for progression. Studying single genes or a single translocation is a futile process. In the years to come we are using more powerful comparative techniques such as gene chips and proteomics, which as I will show you unveil our blindfold. By arraying nearly 18,000 genes on a glass chip about twice the size of a postage stamp and recording the expression patterns of those genes, researchers have obtained detailed molecular portraits of a form of lymphoma. The gene expression profiling experiments revealed that diffuse large-cell B-cell lymphoma (DLBCL) is actually at least two distinct forms of cancer. "This work shows that the molecular portrait of a tumor that we get from DNA microarray analysis can actually be interpreted as a much clearer, more detailed picture of the tumor's biology and that the new things we can see in this picture really make a difference for the patient," Example of Prognostic powers of Molecular Pathology Please read: Alizadeh Nature, al-mulla Mod pathol 2006 (I made copies for you) Slide14:  Survival curves of the two groups defined by the low or high expression of genes in the first cluster from tree harvesting. Group 1 has low gene expression, and group 2 has high gene expression. The survival in the groups is significantly different (p = 2.4 × 10-5). The DLBCL expression matrix, with rows and columns ordered according to a hierarchical clustering applied separately to the rows and columns. Gene chip Slide15:  Locations of the breakpoints in the ABL and BCR genes and structure of the chimeric mRNAs derived from the various breaks. 9q34 Never find exon 1 in of ABL EVEN IF RETAINED IN THE GENOMIC FUSION A2 is always fused. In the majority of CML and 1/3 of ALL (ph+) the break point is M-bcr giving p210 BCR-ABL chimera). In others remaining ALL etc the breakpoint differ giving chimeras of p190 to p230 respectively 22 Example of application of Molecular Pathology in “Tailored therapy” Slide16:  9/22 translocation 9 22 Slide18:  The drug competes with ATP for its specific binding site in the kinase domain. Thus, whereas the physiologic binding of ATP to its pocket allows Bcr-Abl to phosphorylate selected tyrosine residues on its substrates (left diagram), a synthetic ATP mimic such as STI571 fits this pocket equally well but does not provide the essential phosphate group to be transferred to the substrate (right diagram). The downstream chain of reactions is then halted because, with its tyrosines in the unphosphorylated form, this protein does not assume the necessary conformation to ensure association with its effector. Gleevec STI-571 is currently in phase II-III and is showing unprecedented success in PH+ ALL and CML. Although it will not be useful for PH- leukemias. This is a good example for tailored therapy put forward by understanding the molecular basis of diseases. Other examples of tailored therapy:  Other examples of tailored therapy HER-2/Neu amplification and treatment of breast cancer by Herceptin Pharmacogenomics Slide20:  Molecular Methods helps in DIAGNOSIS, predicting PROGNOSIS and tailoring THERAPY to your patients needs. They have there limitations and you need to understand their probabilistic nature Expense Expertise We are part of a multidisplinary team “Remember that taking a Good History allows you to get a diagnosis in 80-90% of cases without the Need of using Fancy technology” ANY QUESTIONS?

Add a comment

Related presentations

Related pages

The Linus Pauling Papers: The Molecular Basis of Disease

Toward the end of World War II, Vannevar Bush, the head of the U.S. Office of Scientific Research and Development, contacted Pauling. Bush was seeking to ...
Read more

Molecular basis of multiple sulfatase deficiency ...

Multiple sulfatase deficiency (MSD), mucolipidosis (MIL) II/III and Niemann-Pick type C1 (NPC1) disease are rare but fatal lysosomal storage disorders ...
Read more


SEMESTER II LSM3224 MOLECULAR BASIS OF HUMAN DISEASES Prerequisite: Pass in LSM 2101 and LSM2103 Workload: 26 lecture hours + 6 tutorial hours + 18 ...
Read more

PPT – 12. Molecular Basis of Genetic Diseases PowerPoint ...

Molecular Basis of Genetic Diseases. ... and Molecular Biology Tutorial II -- Computational Perspective - Genetics and Molecular Biology Tutorial II ...
Read more

Molecular basis of human dentin diseases.

Molecular basis of human dentin diseases. ... types I and II and dentinogenesis imperfecta ... and molecular pathogenesis.
Read more

The molecular basis for the presence of two autoimmune ...

Zakka LR, Reche PA, Ahmed AR. Center for Blistering Diseases, Boston, Massachusetts 02120, USA. Specific Human Leukocyte Antigen Class II (HLA II ...
Read more


Read more

Research Areas - Molecular and Cellular Basis of Disease

Research Areas >> Research Program Overview. Molecular & Cellular Basis of Disease Cell Growth and Division All disease starts at the level of the cell.
Read more

Molecular basis of disease - Griffith University

Health and chronic diseases; Music, the arts and the Asia Pacific; Nursing; Physical sciences; Sustainable tourism; Water science; Griffith research.
Read more