Mikheev SPM210207

50 %
50 %
Information about Mikheev SPM210207
Entertainment

Published on October 15, 2007

Author: Kestrel

Source: authorstream.com

Slide1:  S.P. Mikheyev, INR RAS 20th Anniversary of SN 1987A 20—22 february 2007, Moscow, ФИАН Slide2:  Astrophysical Neutrino Telescopes, A. B. McDonald et al., Rev. Sci. Instrum. 75 (2004) 293, astro-ph/0311343. Supernova Neutrino-Nucleus Astrophysics, A. B. Balantekin, G. M. Fuller, J. Phys. G29 (2003) 2513, astro-ph/0309519. Neutrino astronomy, Totsuka, Y., Rept. Prog. Phys. 55 (1992) 377-430. Observational neutrino astrophysics, Koshiba, M., Phys. Rep. 220 (1992) 229-381. Supernova mechanisms, Bethe, H. A., Rev. Mod. Phys. 62 (1990) 801-866. Supernova neutrino observations: What can we learn?, Georg G. Raffelt, astro-ph/0701677, 2007. ]Neutrino 2006. Supernova neutrino detection, K. Scholberg, astro-ph/0701081, 2007. Neutrino 2006, Santa Fe. Supernova neutrino challenges, Christian Y. Cardall, Nucl. Phys. Proc. Suppl. 145 (2005) 295, astro-ph/0502232. NOW2004, Conca Specchiulla (Otranto, Italy), September 11-17, 2004. Supernova Neutrino Oscillations, Raffelt, Georg G., Phys. Scripta T121 (2005) 102, hep-ph/0501049. Nobel Symposium 129 - Neutrino Physics, Haga Slott, Enkoping, Sweden, August 19-24, 2004. Physics of Supernovae, Nadyozhin, Dmitrij K., Imshennik, V. S., Int. J. Mod. Phys. A20 (2005) 6597, astro-ph/0501002. 19th European Cosmic Ray Symposium (ECRS 2004), Florence, Italy, 30 Aug - 3 Sep 2004. Supernova neutrino detection, Selvi, M., Nucl. Phys. Proc. Suppl. 145 (2005) 339-342. Supernova neutrinos: production, propagation and oscillations, Amol Dighe, Nucl. Phys. Proc. Suppl. 143 (2005) 449, hep-ph/0409268. Neutrino 2004, Paris. Neutrinos: "...annus mirabilis", A. Yu. Smirnov, hep-ph/0402264, 2004. 2nd Int. Workshop on Neutrino oscillations in Venice (NOVE) December 3-5, 2003, Venice, Italy. Neutrinos as astrophysical probes, F. Cavanna, M. L. Costantini, O. Palamara, F. Vissani, Surveys High Energ. Phys. 19 (2004) 35, astro-ph/0311256. ICTP Summer School on Astroparticle Physics and Cosmology, Trieste, Italy, 17 June - 5 Jul 2002. Supernova Neutrinos and Particle-Physics Applications, Raffelt, G., 2003. Lectures given at ISAPP 2003 - International School on AstroParticle Physics, 14-19 July 2003, Madonna di Campiglio, Italy. http://wwwth.mppmu.mpg.de/members/raffelt/mytalks/ISAPP3.pdf. Neutrinos from supernovae, Choubey, Sandhya, Kar, Kamales, hep-ph/0212326, 2002. INSA Proceedings. Astrophysical and Cosmological Neutrinos, Raffelt, G. G., hep-ph/0208024, 2002. International School of Physics "Enrico Fermi," CLII Course "Neutrino Physics," 23 July-2 August 2002, Varenna, Lake Como, Italy. Neutrino masses in astroparticle physics, Raffelt, G. G., New Astron. Rev. 46 (2002) 699-708, astro-ph/0207220. Dennis Sciama Memorial Volume of NAR. Supernova 1987A - A review, Bhattacharya D., Bulletin of the Astronomical Society of India 16 (1988) 57-66. Astronomical Society of India, Meeting, 12th, Raipur, India, Dec. 1987. Observational neutrino astrophysics, Koshiba, M., Phys. Rep. 220 (1992) 229-381. Supernovae Neutrinos. (references) Slide3:  Atmospheric Neutrinos (Cosmic Ray Interactions with Earth Atmosphere) Natural Neutrinos. Particle Accelerators (K2K,MINOS) Confirmations : Slide4:  Solar Neutrinos (Nuclear reactions in the Star) Natural Neutrinos. Reactor Neutrinos (KamLAND) Confirmation : Slide5:  Supernovae Neutrinos (Stellar Collapse) Natural Neutrinos. 23 February 7:36 UT Slide6:  OUTLINE Introduction (Neutrino Oscillations) Supernovae Neutrino Flux Supernovae Structure Neutrino Transport inside Star Neutrino Oscillations in SN Neutrino Transport in the Earth Earth Shadowing Effects Measuring 13 Determining Hierarchy Detecting Next SN Slide7:  Neutrino Mixing Evolution equation Unknown parameters: Slide8:  Matter Effect Vaccum Matter H = H0 + V Hamiltonean Eigenstates Eigenvalues H0 1, 2 m1, m2 m12/2E , m22/2E m1m, m2m H1m, H2m 1m, 2m Mixing angle in matter is determined with respect to eigenstates in matter depend on ne, E Resonance sin22m=1 Slide9:  Matter Effect Normal Hierarchy Invert Hierarchy Two effects Resonance enhancement of neutrino oscillations Adiabatic (partially adiabatic) neutrino conversion Constant density Variable density Change of the phase difference between neutrino eigenstates Change of mixing, or flavor of the neutrino eigenstates Dighe & Smirnov, astro-ph/9907423 Slide10:  Adiabaticity External conditions (density) change slowly so the system has time to adjust itself Adiabaticity condition transitions between the neutrino eigenstates can be neglected Crucial in the resonance layer: - the mixing angle changes fast - level splitting is minimal The eigenstates propagate independently Slide11:  Adiabaticity condition Crucial in the resonance layer: - the mixing angle changes fast - level splitting is minimal DrR > lR lR = l/sin2 is the oscillation length in resonance rR = nR / (dn/dx)R tan2 is the width of the resonance layer External conditions (density) change slowly so the system has time to adjust itself transitions between the neutrino eigenstates can be neglected n1m <--> n2m The eigenstates propagate independently if vacuum mixing is small If vacuum mixing is large the point of maximal adiabaticity violation is shifted to larger densities n(a.v.) -> nR0 > nR nR0 = Dm 2/ 2 2 GF E dqm dt H2 - H1 << 1 Slide12:  Adiabatic Conversion resonance survival probability y = (nR - n)/nR (distance) averaged probability production point y0 = - 5 resonance layer The picture of adiabatic conversion is universal in terms of variable y = (nR - n)/nR (no explicit dependence on oscillation parameters density distribution, etc.) only initial value y0 matters. For zero final density: y = 1/tan2 Slide13:  A Yu Smirnov The picture of conversion depends on how far from the resonance layer in the density scale the neutrino is produced n0 > nR n0 - nR >> DnR n0 ~ nR nR - n0 >> DnR n0 < nR Non-oscillatory conversion Oscillations with small matter effect Interplay of conversion and oscillations All three possibilities are realized for the solar neutrinos in different energy ranges nR ~ 1/ E Supernovae Neutrino Fluxes:  Supernovae Neutrino Fluxes Neutrino sphere (TNS) Raffelt (astro-ph/0105250), Keil, Raffelt & Janka (astro-ph/0208035) Adopted from G.Raffelt’s talk given at Nobel Symposium (2004) Slide15:  Core collapse and bounce Shock propagation and break out Matter accretion and matnle cooling  Cooling of the neutron star after the explosion G.G. Rafelt, “Star as laboratories for fundamental physics” (1996) Supernovae Neutrino Fluxes Slide16:  Livermore numerical model ApJ 496 (1998) 216 ne nx Supernovae Neutrino Fluxes Supernovae Neutrino Fluxes:  Supernovae Neutrino Fluxes G.G. Rafelt, “Star as laboratories for fundamental physics” (1996) H.-T. Janka & W. Hillebrand, Astron. Astrophys. 224 (1989) 49 Supernovae Density Profile:  Supernovae Density Profile Neutrino transitions occur fae outside the core of the star Supernovae Density Profile:  Supernovae Density Profile Adiabaticity parameter: Adiabatic conversion Weak dependence on A Weak dependence on n Neutrino Oscillations in Supernovae Envelope:  Neutrino Oscillations in Supernovae Envelope I – Adiabatic conversion II – Weak violation of adiabaticity III – Strong violation of adiabaticity Pf = 0.9 Pf = 0.1 E = 50 MeV E = 5 MeV Neutrino Oscillations in Supernovae Envelope:  Neutrino Oscillations in Supernovae Envelope Original fluxes After leaving the supernova envelope Normal Inverted sin2(213) ≲ 10-5 ≳ 10-3 Any Hierarchy sin2(Q12)  0.3 0 cos2(Q12)  0.7 sin2(Q12)  0.3 cos2(Q12)  0.7 0 Neutrino Oscillations in Supernovae Envelope:  Neutrino Oscillations in Supernovae Envelope SN Shock Propagation Schirato & Fuller: Connection between supernova shocks, flavor transformation, and the neutrino signal [astro-ph/0205390] Resonance density for Oscillation effects on SN electron Anti-Neutrinos:  Oscillation effects on SN electron Anti-Neutrinos Dighe, Kachelriess, Keil, Raffelt, Semikoz, Tomàs, arXiv:hep-ph/0303210, hep-ph/0304150, hep-ph/0307050, hep-ph/0311172 Slide24:  Oscillation effects on SN electron Neutrinos Dighe, Kachelriess, Keil, Raffelt, Semikoz, Tomàs, arXiv:hep-ph/0303210, hep-ph/0304150, hep-ph/0307050, hep-ph/0311172 Slide25:  Earth oscillation effects on SN Neutrinos Slide26:  Neutrinos from SN1987A One must take into account conversion effects of SN neutrinos Adopted from G.Raffelt’s talk given at Nobel Symposium (2004) Slide27:  Neutrinos from SN1987A Adopted from A.Smirnov’s talk given at Nobel Symposium (2004) Slide28:  Prepearing for Galactic Supernovae Neutrino observation can alert astronomers several hours in advance to a supernova. To avoid false alarms, require alarm from at least two experiments. KABOOM Server @ Kamioka Super-K Alert Kamland SNO MiniBooNE LVD Borexino Supernova 1987A Early Light Curve SuperNova Early Warning System (SNEWS) ??? Slide29:  Prepearing for Galactic Supernovae [Totani, Sato, Dalhed & Wilson, ApJ 496 (1998) 216] Accretion Phase Cooling Phase Simulation for Super-Kamiokande SN signal at 10 kpc, based on a numerical Livermore model Slide30:  Prepearing for Galactic Supernovae IceCube as a Supernova Neutrino Detector Each optical module (OM) picks up Cherenkov light from its neighborhood. SN appears as “correlated noise”. ~ 300 Cherenkov photons per OM from a SN at 10 kpc Noise per OM < 500 Hz [Dighe, Keil & Raffelt, hep-ph/0303210] Slide31:  Prepearing for Galactic Supernovae Is it possible to see the neutronization peak with Super-K? For SN at 10 kpc expect ~ 10 events from prompt burst e + e  e + e Totani, Sato, Dalhed & Wilson, ApJ 496 (1998) 216 Slide32:  Prepearing for Galactic Supernovae Megatonne detector motivated by Long baseline neutrino oscillations Proton decay Atmospheric neutrinos Solar neutrinos Supernova neutrinos (~105 events for SN at 10 kpc) Similar discussions in US (UNO project) Europe (MEMPHYS project) Hyper-K Slide33:  Prepearing for Galactic Supernovae 100m 30m 13m LENA – Low Energy Neutrino Astronomy is the proposal for a Liquid-Scintillator Detector, 50x the size of KamLAND Slide34:  Prepearing for Galactic Supernovae Galactic Supernova @10kpc, ~20000 events in LENA 6 different detection channels: very similar signatures, discrimination via statistics of IBD? Slide35:  Prepearing for Galactic Supernovae ve, ve and vx contributions can be distinguished high statistics time- and energy-analysis of ve and total v flux ~80 ve due to the neutronisation burst can be observed neutrinos from Si-burning phase earth matter effect would be observable (high energy resolution)  v mass hierarchy, q13, Dm212 only galactic (or very near local group) SN observable but: the diffuse SN v background will also be observable in LENA Galactic Supernova Kotake, astro-ph/0509456

Add a comment

Related presentations