advertisement

Metropolis Instant Radiosity

50 %
50 %
advertisement
Information about Metropolis Instant Radiosity

Published on October 26, 2007

Author: nicbet

Source: slideshare.net

Description

Presenting Metropolis Instant Radiosity Method first showed at SIGGRAPH '07
advertisement

Metropolis Instant Radiosity Computer Graphics Seminar - Nicolas Bettenburg 1

Global Illumination 2

Global Illumination 2

Global Illumination • Add Realistic Lighting to Scenes • Takes into Account Reflected Light • Achieve Photo-Realism • Slow to Generate • Computationally Expensive 2

From RT to MIR Diffuse Ray Tracing (1984) 3

From RT to MIR Diffuse Ray Tracing (1984) stochastical Method 3

From RT to MIR Diffuse Ray Tracing Path Tracing (1984) (1986) stochastical Method 3

From RT to MIR Diffuse Ray Tracing Path Tracing Metropolis Light (1984) (1986) Transport (1997) stochastical Method 3

From RT to MIR Diffuse Ray Tracing Path Tracing Metropolis Light (1984) (1986) Transport (1997) stochastical Monte-Carlo Method Methods 3

From RT to MIR extends to achieve GI Photon Mapping (1995) Diffuse Ray Tracing Path Tracing Metropolis Light (1984) (1986) Transport (1997) stochastical Monte-Carlo Method Methods 3

From RT to MIR extends to achieve GI Photon Mapping (1995) Instant Radiosity (1997) Diffuse Ray Tracing Path Tracing Metropolis Light (1984) (1986) Transport (1997) stochastical Monte-Carlo Method Methods 3

From RT to MIR extends to achieve GI Photon Mapping (1995) Instant Radiosity (1997) Metropolis Instant Radiosity (2007) Diffuse Ray Tracing Path Tracing Metropolis Light (1984) (1986) Transport (1997) stochastical Monte-Carlo Method Methods 3

About MLT • Monte-Carlo Path-Tracing based Metropolis Light • Mutates Lightpaths Randomly Transport Veach et al. • Can handle difficult Visibility 1997 • Distributes Light Evenly 4

Problems with MLT • Need Many Rays for Good Results Metropolis Light • Poor Algorithmic Properties Transport Veach et al. • Flickering in Dynamic Scenes 1997 • Samples Interdepend 5

About IR • Monte-Carlo based Generation Instant Radiosity • of Virtual Point Lights Keller et. al. 1997 • Linear Scaling on Complex Scenes 6

Problems with IR Instant • Problems with High Occlusion Radiosity • Fixed Number of VPLs Keller et. al. 1997 • Flickering due to Jumping of VPLs 7

Instant Radiosity 8

Instant Radiosity 9

Instant Radiosity 9

Instant Radiosity 10

Instant Radiosity 11

Metropolis IR 12

Metropolis IR 1. Measure Amount of Light Received 12

Metropolis IR 13

Metropolis IR 2. Generate a set of VPLs 13

Metropolis IR 2. Mutate Set (Metropolis Hastings) 14

Metropolis IR 2. Mutate Set (Metropolis Hastings) 14

Metropolis IR 2. Mutate Set (Metropolis Hastings) 14

Metropolis IR 2. Mutate Set (Metropolis Hastings) 15

Metropolis IR 2. Mutate Set (Metropolis Hastings) 16

Metropolis IR 2. Mutate Set (Metropolis Hastings) 17

Metropolis IR 2. Mutate Set (Metropolis Hastings) 18

Metropolis IR 2. Mutate Set (Metropolis Hastings) 19

Metropolis IR 3. Rescale the Contribution of the VPLs 20

Metropolis IR 21

Theory Behind MIR Lo (x, ω) = Le (x, ω) + fr (x, ωi , ωo ) · Li (x, ω) · (ω, ν)δω Ω 22

Theory Behind MIR Kajiya J.T.: „The Rendering Equation“ (1986) Lo (x, ω) = Le (x, ω) + fr (x, ωi , ωo ) · Li (x, ω) · (ω, ν)δω Ω 22

Theory Behind MIR Kajiya J.T.: „The Rendering Equation“ (1986) Lo (x, ω) = Le (x, ω) + fr (x, ωi , ωo ) · Li (x, ω) · (ω, ν)δω Ω Outgoing Light 22

Theory Behind MIR Kajiya J.T.: „The Rendering Equation“ (1986) Lo (x, ω) = Le (x, ω) + fr (x, ωi , ωo ) · Li (x, ω) · (ω, ν)δω Ω Outgoing Emitted Light Light 22

Theory Behind MIR Kajiya J.T.: „The Rendering Equation“ (1986) Lo (x, ω) = Le (x, ω) + fr (x, ωi , ωo ) · Li (x, ω) · (ω, ν)δω Ω Outgoing Emitted BRDF Light Light 22

Theory Behind MIR Kajiya J.T.: „The Rendering Equation“ (1986) Lo (x, ω) = Le (x, ω) + fr (x, ωi , ωo ) · Li (x, ω) · (ω, ν)δω Ω Outgoing Emitted Inward Light BRDF Light Light Attenuation 22

Theory Behind MIR I= f (ω)dµ(ω) Ω 23

Theory Behind MIR Monte-Carlo Integration I= f (ω)dµ(ω) Ω 23

Theory Behind MIR Monte-Carlo Integration I= f (ω)dµ(ω) Ω Real Valued Function 23

Theory Behind MIR Monte-Carlo Integration I= f (ω)dµ(ω) Ω Real Valued Function Measure on Omega 23

Theory Behind MIR Ij = f (x)dµ(x) j Ω 24

Theory Behind MIR Veach E.: „Robust Monte-Carlo Methods“ (1997) Ij = f (x)dµ(x) j Ω 24

Theory Behind MIR Veach E.: „Robust Monte-Carlo Methods“ (1997) Ij = f (x)dµ(x) j Ω Measurement Equation 24

Theory Behind MIR 25

Theory Behind MIR Keller A.: „Instant Radiosity“ (1997) 25

Theory Behind MIR Keller A.: „Instant Radiosity“ (1997) Camera Path 25

Theory Behind MIR Keller A.: „Instant Radiosity“ (1997) VPL Camera Path 25

Theory Behind MIR Keller A.: „Instant Radiosity“ (1997) VPL Camera Path 25

MIR Algorithm 26

MIR Algorithm Segovia et al.: „Metropolis Instant Radiosity“ (2007) 26

MIR Algorithm Segovia et al.: „Metropolis Instant Radiosity“ (2007) 1.Set Pixel Intensities to 0 26

MIR Algorithm Segovia et al.: „Metropolis Instant Radiosity“ (2007) 1.Set Pixel Intensities to 0 2.Compute Power received by Camera 26

MIR Algorithm Segovia et al.: „Metropolis Instant Radiosity“ (2007) 1.Set Pixel Intensities to 0 2.Compute Power received by Camera 3.Sample VPLs with Metropolis-Hastings 26

MIR Algorithm Segovia et al.: „Metropolis Instant Radiosity“ (2007) 1.Set Pixel Intensities to 0 2.Compute Power received by Camera 3.Sample VPLs with Metropolis-Hastings 4.Rescale the Power of each VPL 26

Results: Direct Light Standard Instant Radiosity Metropolis Instant Radiosity 27

Results: Visibility Bi-Directional Instant Radiosity Metropolis Instant Radiosity 28

Conclusion 29

Conclusion 29

Conclusion 29

Conclusion 29

Conclusion 29

Conclusion •Superior Quality •Fast Computation •Still Flickering •No Caustics •Diffuse Surfaces 29

Add a comment

Related pages

Metropolis Instant Radiosity - ResearchGate - Share and ...

Metropolis Instant Radiosity on ResearchGate, the professional network for scientists.
Read more

Metropolis Instant Radiosity | DeepDyve

Read "Metropolis Instant Radiosity" on DeepDyve - Instant access to the journals you need!
Read more

INSTANT RADIOSITY - Home | Department of Computer Science

METROPOLIS INSTANT RADIOSITY • We must find VPLs which illuminate parts of the scene, seen by the camera. I. First, use the standard sequence of
Read more

Metropolis Instant Radiosity - Welcome on the LIRIS ...

B. Segovia, J.C. Iehl and B. Péroche / Metropolis Instant Radiosity of the scene seen by the camera are not illuminated by the regions close to the source.
Read more

Metropolis Instant Radiosity - Segovia - 2007 - Computer ...

Metropolis Instant Radiosity. B. Segovia 1,2, J.C. Iehl 2 and; B. Péroche 2; Article first published online: 12 OCT 2007. DOI: 10.1111/j.1467-8659.2007 ...
Read more

Metropolis Instant Radiosity - Segovia - 2007 - Computer ...

B. Segovia 1,2, J.C. Iehl 2 and; B. Péroche 2; Article first published online: 12 OCT 2007. DOI: 10.1111/j.1467-8659.2007.01065.x
Read more

Instant Radiosity for Real-Time Global Illumination

Instant Radiosity for Real-Time Global Illumination Ingo Radax Vienna University of Technology (a) Direct Illumination, Hard Shad-ows, Reflections
Read more

Instant Radiosity

Metropolis Instant Radiosity. B. Segovia, J.C. Iehl, B. Péroche. Incremental Instant Radiosity for Real-Time Indirect Illumination. Samuli Laine, Hannu ...
Read more

Institut für Medieninformatik - Universität Ulm

4 Konferenzbeiträge bei ACM CHI 2016 Das Institut für Medieninformatik wird auf der CHI 2016 (Conference on Human Factors in Computing Systems) in San ...
Read more