advertisement

advertisement

Information about Mathematical Problem Solving And Mind Mapping

The basic idea: use one problem map for the actual problem and one or more tool maps with large collection of problem solving tools.

advertisement

It can be used almost everywhere and can be adapted to practically all purposes - from writing a diary to planning a birthday party and from taking notes during a lecture to solving mathematical problems. Moreover, it is easy and pleasant to use. Disadvantages of mind mapping: The use of keywords and images (besides problems like untidy handwriting) makes mind maps not the ideal technique for communicating ideas. Mind maps may tempt you to shun difficult questions in several ways: By digression to more accessible aspects of your topic or by tackling a problem on an inappropriate level, e.g. by exaggerated planning. But in summary, the advantages easily outweigh the shortcomings. There is a growing number of computer programs for mind mapping, some of them rather advanced. A brief internet search yields several programs and downloads. An thorough discussion of mind mapping can be found in ‘The Mind Map Book’ by Tony and Barry Buzan. III. Tandem Mind Mapping: Using several mind maps at a time III.1 Terminology The principal mind map in which you examine the given problem will be called basic map. The additional mind maps with information on heuristic strategies and tools will be called heuristic maps. The process of using basic maps and heuristic maps at a time will be called tandem mind mapping. The words ‘tool‘ and ‘operator‘ refer quite generally to any technique you may find useful in solving a problem. III.2 Content of heuristic maps Here comes a list of operators that may be useful in mathematical problem solving. The list is in no way exhaustive. Moreover, single tools may fit into several of the following operator groups. I cannot claim to be an expert in solving mathematical problems, and the main objective of this list is to give some impression of what heuristic maps may contain. Some of the tools will perhaps appear objectionable or worthless to the reader. For my principal goal, namely discussing the potential merits of tandem mind mapping, the actual choice of certain tools is less important. General strategies: These are ‘top level‘ heuristic strategies that coordinate the entire process of problem solving. A prominent example are the basic steps in Polya’s ‘How to Solve It‘: 1. understanding the problem - 2. devising a plan – 3. carrying out the plan – 4. looking back. For each step, several auxiliary questions and other tools are given. General principles: Examples: Invariance principle - Extremal principle - Induction principle – Pigeonhole Principle - Symmetry General mathematical tools: Examples: Characteristic functions - Power series – Graph Theory General mathematical tactics: Examples: Defining auxiliary functions – Working backward or forward Tools for dealing with certain mathematical objects: The selection of tools referring to certain mathematical objects depends heavily on your area of work. For example, if you are working on probability topics, tools referring to martingales may be fundamental to you. You could arrange any number of results relevant to a given mathematical object. Some restraint should prevent you from piling up loads of irrelevant information. Analysis tools: 2

Examples: Collect seminal ideas about the problem - Identify relevant components of the problem - Collect relevant questions - Ask iteratively for the reason of things and their respective reasons - Ask iteratively how goals and subgoals can be reached – Make a drawing of the situation Creativity tools: Sometimes A. Koestler‘s idea of bisociation and other classical creativity techniques like brainstorming might prove useful in mathematics. Other tools are more closely related to mathematics, like recasting the problem by changing one’s point of view. Checklists: For some users checklists may be valuable, e.g. lists of common errors with entries ranging from checks against division by zero to wrongly changing the order of limits. Information retrieval tools: Examples: Use math databases like the Mathematical Reviews or the Zentralblatt für Mathematik - Ask an expert for direct help or for hints to relevant literature - Post a question to relevant internet communities Review tools: Examples: What techniques have been used during problem solving? - Which tools worked well or less well, and why? - What are the strong points and shortcomings of a result and the process of finding it? - How would X (a teacher or another expert) assess the result and the process of finding it? What are the tools I should add, delete or adapt? Tools for dealing with dysfunctional emotions: If you feel that being frustrated or discouraged doesn’t help you at the moment, you can try some of the following tools: Remember past successes - Imagine having succeeded – Use coping self talk Metatools: Metatools support the finding and invention of tools. Examples: What are recurring shortcomings of my problem solving activities, and how can I overcome them? - What are the most successful tools I use? Why do they work so well? How can I use their strong points in other areas? – What tools have been used in a given article or book that may be useful? – How can I improve my set of heuristic maps? Miscellaneous tools: Examples: How would X (a teacher, an expert, or even a famous mathematician fom history) tackle the problem? - Give yourself a break - Do some physical exercise - Postpone the problem III.3 Organisation of heuristic maps Simply piling up loads of tools is not enough. The tools must be organized so you can find them when – and where - you need them. For example, you can arrange operators by problem phases. This is Polya’s approach in ‘How to Solve It‘, see the above remarks on general strategies. In addition, it is often useful to arrange tools according to problem situations like ‘defining a goal‘, ‘tackling difficulties‘ etc. Moreover, you can use the above operator groups for organizing the tools. Obviously, it is necessary to use an appropriate number of heuristic maps. You may for example use the following set of maps: - map with general strategy tools, e.g. Polya’s catalogue of questions and additional basic tools, - map containing general mathematical principles and general mathematical tools, - maps with detailed information on mathematical tools, - maps with miscellaneous tools. Some degree of redundancy in these maps is inevitable. Tools often belong to more than one group of operators and should be found in several maps. You can use maps that contain only the names of operator groups and arrange the tools in that group in a separate map. (If you use computer mind maps, you can organize a huge number of operators in a single map, which is much more convenient.) 3

III.4 Example The following excerpt from a heuristic map is again based on Polya’s ‘How to Solve It‘. Examine What is the unknown? aims. What is the aim? Aim appropriate? Examine data. Possible to satisfy? Sufficient? Examine Insufficient? conditions. Contradictory? understanding the problem Redundant? Separate various parts. Draw a figure. Introduce suitable notation. Evident? Other tools Look at special Possible Examine results. cases. to simplify? Explain it to yourself Try to or someone else. generalize. Examine arguments. Use methods. Alternatives? looking back Use related Use result elsewhere. problems. Use results. Reasons Use auxiliary for failure? constructions. Examine Shortcomings? Context problem solving. General strategies Improvements? Useful of problem? theorems? Which objects Lessons Properties? to be learned? are involved? Theorems? Restate Look for several Correctness the problem. restatements. evident? Change point of view. Check carrying Prove each step. correctness. out the plan Go back to definitions. devising More Need for a plan accessible? adapting aims? Modify the More problem. general? More special? Analogous? Modify Modify the Drop parts. conditions. Modify parts. Derive Modify information. the data. Use different data. Data? All information used? Conditions? 4

IV. Discussion Here comes a list of benefits of the tandem mind mapping concept. Large toolbox: The heuristic maps contain large numbers of tools. They remind you of tools you might otherwise have overlooked. This is especially valuable for problem solvers who are not yet familiar with some tools. Flexibility: You can develop the heuristic maps that are appropriate to your degree of expertise, to the problem type you deal with and to your personal likes and dislikes. Active work on heuristics: Heuristic maps are dynamic objects. You are encouraged to think about your problem solving habits, to discuss them with others and to improve them continually. Review tools and metatools may support these activities. Knowledge transfer: By sharing and explaining their heuristic maps, experts can help novices to acquire a working knowledge on how to solve mathematical problems. Mind map benefits: Using mind mapping at all may be an important step towards better problem solving. The mind map presentation of tools is superior to conventional text: - It is easier to add new tools at the appropriate places in a mind map. - The hierarchical mind map structure makes it easy to find operators that are relevant to your problem situation. - Colours and symbols give additional information about the tools. V. Literature De Bono, Edward: de Bonos neue Denkschule. Mvg Verlag, Landsberg 2002 Buzan, Tony: The Mind Map Book. BBC Books, London 1995 Buzan, Tony: Business Mind Mapping. Ueberreuter, Frankfurt 1999 Dörner, Dietrich: Problemlösen als Informationsverarbeitung. Kohlhammer, Stuttgart 1987 Dörner, Dietrich: Die Logik des Misslingens. Rowohlt, Reinbek 1989 Dörner, Dietrich: Bauplan für eine Seele. Rowohlt, Reinbek 1998 Engel, Arthur: Problem-Solving Strategies. Springer, New York 1998 Funke, Joachim: Problemlösendes Denken. Kohlhammer, Stuttgart 2003 Higgins, James M.: 101 Creative Problem Solving Techniques. The New Management Publish Company, Winter Park 1994 Hoenig, Christopher: The Problem Solving Journey. Perseus Publishing 2000 Jones, Morgan D.: 14 Powerful Techniques for Problem Solving. Three Rivers Press, New York 1998 Mason, John: Hexeneinmaleins. Oldenbourg, München 1985 Michalko, Michael: Cracking Creativity. Ten Speed Press, Berkeley 2001 Nelson-Jones, Richard: Using Your Mind. Cassell, London 1997 North, Klaus: Wissensorientierte Unternehmensführung. Gabler, Wiesbaden 2002 Von der Oelsnitz, Dietrich; Hahmann, Martin: Wissensmanagement. Kohlhammer, Stuttgart 2003 Polya, George: How to Solve it. Princeton 1957 Pricken, Mario: Kribbeln im Kopf. Schmidt, Mainz 2001 Robertson, S. Ian: Problem Solving. Psychology Press 2001 Sell, Robert; Schimweg, Ralf: Probleme lösen. Springer, Berlin 2002 Zeitz: The Art and Craft of Problem Solving. Wiley, New York 1999 Final note: The term Mind Mapping is a registered trademark of Buzan Centres Ltd. I do not have any commercial interests with this paper, and I hope I do not violate any naming restrictions in using the term. Dr. Thomas Teepe 5

Alosenweg 37 70329 Stuttgart Germany Email: thomasteepe@web.de 30. November 2003, slightly revised on 13. November 2008-11-13 6

Belief comes through hearing. In order to have belief, we must listen, but we also...

Presentation held at the Etsy Team Captain Summit in Berlin, March 14-16, 2014

Download hack tool @ http://dragoncity.cooldownloadz.com

An how-to build an inexpensive Arduino Board for 5 USD.

step by step guide on how small businesses can start payroll software in -mid-year.

CLC Trendspotting - The Technologies of Makerspaces, presented by Edward Iglesias ...

Here are some ideas on how to use mind maps for math problem solving. It combines ideas on math heuristics from George Polya, Arthur Engel, Paul Zeitz and ...

Read more

Mind Mapping is a very powerful tool when it comes to ... Feel free to use it to help you solve problems. Show Problem Solving Mind Map Document in ...

Read more

Math problem solving and mind mapping. ... The key difficulty in using mind mapping for mathematical problem solving is to combine ...

Read more

Problem Solving with Mind Mapping Strategy, Komang Suardika, S.Pd 2012 1 ... Mathematical Problem Solving and Mind Mapping. Tersedia pada http :

Read more

This map contains a number of ideas on solving math problems. The map deals with general problem solving tools that are not specific for one area, e.g. you ...

Read more

Problem Solving with Mind ... The same principle applies to our minds as we engage in problem solving. ... mind mapping is not only a problem solving ...

Read more

Mind Mapping: Scientific Research and Studies ... Mind Mapping encourages critical thinking and problem -solving Page ... Mathematical Mind Mapping ...

Read more

Problem Solving and Decision Making, mind mapping skills, ... Mind Mapping & Problem Solving. to be fulfilled by Training.Com Asia Sdn Bhd ...

Read more

## Add a comment