advertisement

Math 189 Exam 1 Solutions

40 %
60 %
advertisement
Information about Math 189 Exam 1 Solutions
Education

Published on February 19, 2014

Author: tylerisaacmurphy

Source: slideshare.net

Description

Jason Smith Exam 1 Solutions for Math 189, Boise State University, Spring 2014
advertisement

1 True or False. Justify your answer. 1.1 A. The Contrapositive of A → B is ¬B → ¬A. True. A B T T T F F T F F 1.2 ¬A F F T T ¬B F T F T A→B T F T T ¬B → ¬A. T F T T B. If you want to prove a statement is true, it is enough to find 867 examples where it is true. False The case may not be true for the 868th example.You must show it is true for all cases. However, to disprove it, you only need to show one counter example. 1.3 C. If P ∧ Q is true, then P ∨ Q is true. True P ∧ Q is true means that P is true and Q is true. In order for P ∨ Q to be true, we only need only one of P, Q to be true. Since we have both, then P ∨ Q is true. 1.4 D. P → Q and Q → P are logically equivalent. False P Q P → Q Q → P. T T T T T F F T F T T F F F T T Consider the bolded cases that have different truth values. 1

1.5 E. If p → q is false, then the truth value of (¬p ∨ ¬q) → (p ↔ q) is also false. True. Realize that the only case where p → q is false is when p is true and q is false. So ¬p is false and ¬q is true. So (¬p ∨ ¬q) is true since ¬q is true. Also, (p ↔ q) means (p → q) ∧ (q → p). However, since p → q is false, then (p ↔ q) is false. Therefore, since the first part of the implication(¬p∨¬q) is true and the second (p ↔ q) is false, we have that (¬p ∨ ¬q) → (p ↔ q) is false when p → q is false. 2 2.1 Prove that if a and b are odd integers, then a ∗ b is an odd integer. Proof. Assume that a, b are odd integers. Then a = 2k + 1 for some integer k. Also, b = 2m + 1 for some integer m. We have that a ∗ b = (2k + 1)(2m + 1). = 4km + 2k + 2m + 1. = 2(2km + m + k) + 1 . Since k, m are integers, so is 2km + k + m. So a ∗ b is odd. 3 3.1 For any mathematical statement, say C, fn (C) denotes the mathematical statement: ¬¬ . . . ¬C, where there are n¬ symbols in front of C. Prove that if A is a True mathematical statement and B is a False mathematical statement, then ¬(f3 (A) ∨ f2 (B)) is a True mathematical statement. 2

Proof. Assume that A is a True mathematical statement and B is a False mathematical statement. We have that f3 (A) = ¬¬¬A = ¬(¬¬)A = ¬A since every pair of ¬ symbols cancels out by the Double Negative Law. We also have f2 (B) = ¬¬B = (¬¬)B = B. So we have ¬(¬A ∨ B), which is (¬¬A ∧ ¬B). So we have A ∧ ¬B. Since A is true and B is false (that is, ¬B is true), we have two true statements. The joining of two true statements with ”and” is true, so ¬(f3 (A) ∨ f2 (B)) is a True mathematical statement 4 4.1 4.1.1 p T T T T F F F F Find the Disjunctive Normal Form of ((p → q) ∧ (q → r)) → (p → r) Method: Truth Table q T T F F T T F F r T F T F T F T F ¬p F F F F T T T T ¬q F F T T F F T T ¬r F T F T F T F T p→q T T F F T T T T q→r T F T T T F T T p→r T F T F T T T T ((p → q) ∧ (q → r)) T F F F T F T T ((p → q) ∧ (q → r)) → (p → r) T T T T T T T T So we have (p ∧ q ∧ r) ∨ (p ∧ q ∧ ¬r) ∨ (p ∧ ¬q ∧ r) ∨ (p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ q ∧ r) ∨ (¬p ∧ q¬r) ∨ (¬p ∧ ¬q ∧ r) ∨ (¬p ∧ ¬q ∧ ¬r). Note that this the original statement is true no matter what the truth values of p, q, r. So Disjunctive Normal Form addresses each of the possible cases represented in the truth table. 3

5 5.1 Let a, b, c be real numbers. Prove that if a + b ≥ c, then a ≥ b ≥ c2. c 2 or Note: This can be proven directly but then you must address each of the following cases: c c (i). a = 2 , b = 2 . c c (ii) a = 2 , b > 2 . c c (iii) a > 2 , b = 2 (similar to ii) c c (iiii) a > 2 , b > 2 . This is why contradiction proofs are easier to use in situations where you have OR statements to deal with. In this situation, a contradiction gives us an AND statement, which is a single case. When writing proofs it is often helpful to ask yourself ”When can this be false?” Then show that that case cannot happen. So, c c Proof. Suppose for contradiction that a + b = c and a < 2 and b < 2 . c c Then a + b < 2 + 2 . So a + b < c, which contradicts our original assumption that a + b = c. 4

Add a comment

Related presentations

Related pages

Math 189 Exam 1 Solutions - Education

Jason Smith Exam 1 Solutions for Math 189, Boise State University, Spring 2014
Read more

Math 189 | David Li-Bland

Math 189: Mathematical ... Midterm Exam 1: Wednesday, September 17th, ... Instead of emailing me math questions, I encourage you to post them to Piazza.
Read more

189 - Math 1, Summer 2011, Practice Midterm 1 SOLUTIONS 1 ...

... 189 from MATH 61 at UCLA. Math 1, Summer 2011, Practice Midterm 1 SOLUTIONS 1. ... Math 1, Summer 2011, Practice Midterm 1 SOLUTIONS 1 ...
Read more

MATH 180: Calculus I

Midterm 1: Tuesday, September 27, ... MATH 180 had exams during weeks 6 and 10, ... Spring 2016 Solutions; Fall 2015 Final Exam;
Read more

MATH 183 Final Exam - My Math Genius

... from 1 to 3 About the Solutions ... MATH 183 Final Exam Level ... We regularly update our math homework solutions library and are ...
Read more

Some questions on this paper require only BRIEF - MATH ...

Some questions on this paper require only BRIEF SOLUTIONS ; ... 09 Version 1 2 2. BRIEF SOLUTIONS ... Exam 5 McGill MATH 189-140A ...
Read more

Calculus Ab Exam 1 Solutions - booksuggestsubstantial.link

... 189 pages Thank you very much ... calculus ab exam 1 solutions is available in our digital library an online access to it is set ... Staar 2014 Test ...
Read more

2010 VCAA Further Mathematics Exam 1 Solutions - itute.com

2010 VCAA Further Mathematics Exam 1 Solutions © Copyright 2010 itute.com Free download from www.itute.com ... 18 10 cos 75 ° ≈18 .189 km
Read more