advertisement

JAWAB UAN IPA 2006/2007 P12

0 %
100 %
advertisement
Information about JAWAB UAN IPA 2006/2007 P12
Education

Published on November 20, 2008

Author: reborn4papua

Source: slideshare.net

advertisement

www.aidianet.blogspot.com JAWABAN UJIAN NASIONAL 2006 / 2007 MATEMATIKA IPA P12 - A RABU, 18 APRIL 2007 1. Jawab: C 2. Jawab: B 2 log 3 . 3log 5 = 2log 5 = ab 15 log 20 = 3. Jawab: C x2 – 5x + 6 = 0 x 1 + x2 = - - - y1 + y2 = (x1 – 3) + (x2 – 3) = (x1 + x2) – 6 = 5 – 6 c 6 =–1 x1 . x2 = 6 a 1 y1 . y2 = (x1 – 3) (x2 – 3) = x1.x2 – 3(x1 + x2) + 9 = 6 – 3(5) + 9 = 0 x2 – (y1 + y2)x + (y1 . y2) = 0  x2 – (–1)x + 0 = 0  x2 + x = 0 4. Jawab: E Titik Puncak (1, 4) Titik potong dengan sumbu X (–1, 0) dan (3, 0) (1, 4) Titik potong dengan sumbu Y (0, 3) Cara 1: Gunakan persamaan y = a (x – x1) (x – x2) (0, 3) Titik puncak  y = 4, x = 1 Titik potong sumbu X  x1 = – 1, x2 = 3 4 = a (1 + 1) (1 – 3) = a (–4) (3, 0) (-1, 0) 4 = – 4a a=–1 y = – 1 (x + 1) (x - 3) = – (x2 – 2x - 3) y = – x2 + 2x + 3 © Aidia Propitious 1

www.aidianet.blogspot.com Cara 2: Gunakan persamaan y = a (x – xp)2 + yp Titik potong sumbu x  x = –1, y = 0 Titik puncak  xp = 1, yp = 4 0 = a (– 1 – 1)2 + 4 = a (4) + 4 0 = 4a + 4  4a = – 4 a=–1 y = –1 (x – 1)2 + 4 = – (x2 – 2x + 1) + 4 = – x2 + 2x – 1 y = –x2 + 2x + 3 5. Jawab: A f(x) = 3x2 – 4x + 6 ; g(x) = 2x – 1 ; (f o g)(x) = 101 2 (f o g)(x) = f(g(x)) = 3(2x – 1) – 4(2x – 1) + 6 = 3(4x2 – 4x + 1) – 8x + 4 + 6 = 12x2 – 12x + 3 – 8x + 10 101 = 12x2 – 20x + 13 12x2 – 20x – 88 = 0  dibagi 4 3x2 – 5x – 22 = 0 (3x – 11) (x + 2) = 0 11 2 x1 3 ; x2 2 3 3 6. Jawab: E 32x+1 – 28.3x + 9 = 0  32x . 31 – 28 . 3x + 9 = 0 Misal: 3x = A 3A2 – 28A + 9 = 0 (3A – 1) (A – 9) = 0  A = 1/3 ; A=9 3x = 9  x1 = 2 ; 3x = 1/3  x2 = –1 3x1 – x2 = 3(2) – (–1) = 7 7. Jawab: D (x – 2)2 + (y + 1)2 = 13  Pusat (2, –1) ; Jari-jari (r) = 13 x = –1  (–1 – 2)2 + (y + 1)2 = 13  9 + y2 + 2y + 1 = 13  y2 + 2y – 3 = 0  (y + 3) (y – 1) = 0  y = –3 ; y = 1  ada 2 titik pada lingkaran: (–1, –3) dan (–1, 1) Gunakan rumus :(x – a) (x1 – a) + (y – b) (y1 – b) = r2 (–1, –3) : (x – 2) (–1 – 2) + (y + 1) (–3 + 1) = 13 –3 (x – 2) – 2 (y + 1) = 13 –3x + 6 – 2y – 2 = 13 3x + 2y + 9 = 0 © Aidia Propitious 2

www.aidianet.blogspot.com (–1, 1) : (x – 2) (–1 – 2) + (y + 1) (1 + 1) = 13 –3 (x – 2) + 2 (y + 1) = 13 –3x + 6 + 2y + 2 = 13 3x – 2y + 5 = 0 8. Jawab: A f(x) : (x – 2) sisa 24  f(2) = 24 f(x) : (2x – 3) sisa 20  f(3/2) = 20 – – - - ; a=2 ; b = 3/2 ; f(a) = 24 ; f(b) = 20 9. Jawab: E 2 2 1 x 67 2x + 2y + 1z = 67.000 3 1 1 y 61 3x + 1y + 1z = 61.000 1x + 3y + 2z = 80.000 1 3 2 z 80 2 2 1 2 2 D= 3 1 1 3 1 (4) + (2) + (9) – (1) – (6) – (12) = –4 1 3 2 1 3 67 2 1 67 2 Dx = 61 1 1 61 1 (134) + (160) + (183) – (80) – (201) – (244) = –48 80 3 2 80 3 2 67 1 2 67 Dy = 3 61 1 3 61 (244) + (67) + (240) – (61) – (160) – (402) = –72 1 80 2 1 80 2 2 67 2 2 Dz = 3 1 61 3 1 (160) + (122) + (603) – (67) – (366) – (480) = –28 1 3 80 1 3 Dx 48 Dy 72 Dz 28 x 12 ; y 18 ; z 7 D 4 D 4 D 4 Harga: x + y + 4z = (12.000) + (18.000) + 4(7.000) = 58.000 10. Jawab: C 2 1 x y 2 7 2 7 3 A ; B ; C Ct 1 4 3 y 3 1 2 1 © Aidia Propitious 3

www.aidianet.blogspot.com x y 2 2 1 7 3 B – A = Ct  3 y 1 4 2 1 y–4=1  y=5 x + (5) – 2 = 7  x=4 x . y = (4)(5) = 20 11. Jawab: C 1x + 0 y < 0200 4x + 20y = 1760 x + (60) = 200 4x + 20y < 1760 4x + 24y = 0800 – x = 200 – 60 = 140 16y = 960 y= 60 Pendapatan maksimum: 1.000x + 2.000y = 1.000(140) + 2.000(60) = 260.000 12. Jawab: B 0 1 1 2 1 3 RP P R 1 0 1 ; RQ Q R 3 0 3 4 2 2 2 2 0 RP . RQ (1)(3) (1)(-3) (2)(0) 0 cos θ 0 RP RQ 12 12 22 . 32 (-3)2 0 6 2 Θ = 90° 13. Jawab: A 2 0 2 0 0 0 AB B A 2 0 2 ; AC C A 2 0 2 0 0 0 2 0 2 Proyeksi vektor orthogonal AB pada AC : 2 0 2 2 0 0 0 0 2 0 4 0 1 2 2 2 2 j k 2 2 8 2 0 2 2 2 2 2 14. Jawab: D y = x2 – 3  Persamaan kuadrat  Carilah titik potong dengan sumbu X dan Y X 0 + 3 – 3 y –3 0 0 A (0, –3) B (+ 3 , 0) C (– 3 , 0) © Aidia Propitious 4

www.aidianet.blogspot.com Refleksi Dilatasi sumbu x k 2 (x, y) (x, -y) (x, y) (kx, ky) (0, -3) (0, 3) (0, 6) (+ 3 , 0) (+ 3 , 0) (+2 3 , 0) (– 3 , 0) (– 3 , 0) (–2 3 , 0) y = a (x – x1) (x – x2)  6 = a (0 - 2 3 ) (0 + 2 3 ) 6 = a (-2 3 ) (2 3 ) 6 = – 12 a a=–½ y = –½ (x – 2 3 ) (x + 2 3 ) = –½ (x2 – 12) = –½x2 + 6 15. Jawab: B U3 = a + 2b = 36 a + 2b = 36 a + 2(12) = 36 U5 + U7 = (a + 4b) + (a + 6b) a + 5b = 72 - a = 36 – 24 144 = 2a + 10b a = 12 72 = a + 5b –3b = –36 b = 12 16. Jawab: E a = 80.000.000  sederhanakan menjadi a = 80 r=¾ U3 = a . r2 = (80) (¾)2 = (80) (9/16) = 45 17. Jawab: B p = hari panas p q p q p r q = ani memakai topi ~q v r q r ~r (modus tolens) r = memakai payung ~r p r ~p ~p = hari tidak panas 18. Jawab: B F 1 ACH  titik tengah P  DP = /3 DF Q EGB  titik tengah Q  FQ = 1/3 DF P DF  Diagonal ruang D Jarak PQ = 1 – 1/3 – 1/3 = 1/3 . 6 3 = 2c © Aidia Propitious 5

www.aidianet.blogspot.com 19. Jawab: - BG = a 2 ; BDHF  diwakili oleh garis BH ; BH = a 3 B HG2 = BH2 + BG2 – 2(BH) (BG) cos B a2 = (a 3 )2 + (a 2 )2 – 2(a 3 ) (a 2 ) cos B a 2 a 3 a2 = 3a2 + 2a2 - 2 6 a2 . cos B 5a2 a2 4a2 1 G H cos B = 6  B = 35,3 a 2 6a 2 2 6a 2 3 20. Jawab: A C = 45 ; a=p ; b= 2 2p c2 = a2 + b2 – 2ab cos C = (p)2 + (2 2 p)2 – 2 (p) (2 2 p) cos 45 = p2 + 8p2 – 4 2 p2 (½ 2 ) = 9p2 – 4p2 = 5p2 c= 5p 21. Jawab: C cos 40 + (cos 80 + cos 160) = cos 40 + [2 cos ½ (80 + 160) . cos ½ (80 – 160) = cos 40 + [2 cos 120 . cos 40 ] = cos 40 (1 + 2 cos 120) = cos 40 (1 + 2 (-½)) = 0 22. Jawab: A A = x2 – x – 6  A’ = 2x – 1 B=4- 5x 1  B’ = - ½ . 5 (5x + 1)-½ = - 5/2 (5x + 1) -½ 2(3) 1 5 . 2 16 8 5 5 2 5(3) 1 23. Jawab: E 1 (1 2 sin2 x) 2 . sin x . sin x Limit Limit 4 x 0 1 x 0 1 x . tan x x . tan x 2 2 24. Jawab: C f' (x) 2 sin 2x 2 cos 2x 4 sin 2x cos 2x 6 6 6 6 1 1 f' (0) 4 sin 2(0) cos 2(0) 4. . 3 3 6 6 2 2 © Aidia Propitious 6

www.aidianet.blogspot.com 25. Jawab: D 27 + 9 + 3 – a3 – a2 – a = 25  a3 + a2 + a – 14 = 0 Gunakan horner: 2 1 1 1 -14 (a – 2) (a2 + 3a + 7) = 0 + + + a=2 2 6 14 ½a=1 1 3 7 0 26. Jawab: B Short-cut agar luas persegi panjang maksimum: - panjang = ½ x = ½ (4) = 2 - lebar = ½ y = ½ (5) = 2½ - luas maksimum = ¼ xy = ¼ (4)(5) = 5 27. Jawab: C y = x2 ; x+y=6  y=6–x ykurva = ygaris  x2 = 6 – x  x2 + x – 6 = 0  (x + 3)(x – 2) = 0  x = -3, x = 2 - - - - - - - - - - - 28. Jawab: D y = -x2 + 4 ; y = -2x + 1 ykurva = ygaris  -x2 + 4 = -2x + 1  x2 – 2x – 3 = 0  (x – 3) (x + 1) = 0  x = 3 , x = -1 – - – - – - - - © Aidia Propitious 7

www.aidianet.blogspot.com 29. Jawab: E P(A) = 3/8 ; P(B) = 6/10 30. Jawab: D Fmod = 14 ; L = 48,5 ; c=6 ; f k = 4 + 6 + 9 = 19 ; n = 50 – – Mod = Jika ditemukan kesalahan dalam pembahasan, mohon hubungi reborn4papua@yahoo.com atau 08999812979. Terima kasih. © Aidia Propitious 8

Add a comment

Related presentations

Related pages

JAWAB UAN IPA 2006/2007 P12 - Education - dokumen.tips

UAN IPA 2006/2007 P12 1. SOAL UJIAN NASIONAL 2006 / 2007MATEMATIKA IPA P12 - ARABU, 18 APRIL 20071. Bentuk sederhana dari --adalah ….
Read more

UAN IPA 2006/2007 P12 - Education - DOKUMEN.TIPS

JAWAB UAN IPA 2006/2007 P12 1. www.aidianet.blogspot.com JAWABAN UJIAN NASIONAL 2006 / 2007 MATEMATIKA IPA P12 - ARABU, 18 APRIL 20071. Jawab: C 2.
Read more

SOAL DAN PEMBAHASAN UJIAN NASIONAL MATH IPA 2009-2010 PAKET A

... P12-2009/2010 52075563.doc SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA IPA KODE : D10-P12-2009 ... Jawab : D SEMOCA SUKSES Mais ... Pembahasan UAN ...
Read more

Pembahasan UAN Matematika SMA IPA 2009-2010

Pembahasan UAN Matematika SMA IPA 2009-2010. ... IPA Matematika 2006-2007. ... Soal Jawab Unas Mipa. Makalah ...
Read more

Pembahasan Soal Ujian Nasional / UN SMA 2014 | zenius blog

Yap, kita mau bahas soal UN SMA 2014 yang lalu, baik untuk IPA maupun IPS. Eh, masih bulan November, tapi Zenius udah mau bahas soal UN aja nih.
Read more

Un Biologi Sma Ipa 2006-Soal+Pembahasan - scribd.com

A. jujur terhadap fakta B. bertanggung jawab C. disiplin dan tekun D. melakukan penelitian untuk ... Bocoran Soal UN Matematika SMA IPA 2015 by Pak ...
Read more