# Introduction to boolean algebra

33 %
67 %
Information about Introduction to boolean algebra
Education

Published on February 12, 2014

Author: bugteeth

Source: slideshare.net

## Description

1 + 1 = 1. DUH! Boolean Algebra, one of the backbones of computing. By http://www.mediotype.com - Unlock the power of math and get ready for computer wizardry.

Mediotype 1 + 1 = 1...Duh! Boolean Algebra M

Order of operations Please Excuse My Dear Aunt Sally PEMDAS Parentheses, Exponents, Multiplication, Division, Addition, Subtraction (4+2-1*5) + 3*2 = ? 2*2/4 = ? M

A Quick Word On Variables var·i·a·ble /ˈve(ə)rēəbəl/ Noun: An element, feature, or factor that is liable to vary or change. M

A Quick Word On Variables (cont) Variables In algebraic expressions, letters represent variables. These letters are actually numbers in disguise. In this expression, the variables are x and y. We call these letters "variables" because the numbers they represent can vary—that is, we can substitute one or more numbers for the letters in the expression. M

A Quick Word On Variables (cont) Algebra 3 + x = 10 -3 -3 x = 10 - 3 x=7 It's a place holder. M

Questions? diveinto@mediotype.com M

Basic Operations AND x∧y = x*y \$x AND \$y \$x && \$y x∧y •  •  •  OR x∨y = x + y - x*y x OR y x || y x∨y •  •  •  NOT ¬x = 1 - x !\$x ¬x •  •  M

Basic Operations AND x∧y = x*y \$x AND \$y \$x && \$y x∧y •  •  •  OR x∨y = x + y - x*y x OR y x || y x∨y •  •  •  NOT ¬x = 1 - x !\$x ¬x •  •  M

AND, &&, ∧ Truth table x∧y = x*y M

OR, ||, ∨ Truth table x∨y = x + y - x*y M

NOT, !, ¬ Truth table ... or is it ¬x = 1 - x M

Questions? diveinto@mediotype.com M

1.  TRUE AND TRUE = ? 2.  !TRUE || FALSE = ? 3.  (FALSE OR FALSE) AND TRUE = ? 4.  !TRUE = ? 5.  TRUE && TRUE && FALSE = ? 6.  TRUE ∧ FALSE ∨ TRUE = ? 7.  (TRUE AND TRUE) AND (TRUE OR FALSE) = ? 8.  ¬FALSE ∨ FALSE = ? Exercise M

Derived operations NOR !(\$x) OR \$y x → y = (¬x ∨ y) •  •  XNOR !(x XOR y) x ≡ y = ¬(x ⊕ y) •  •  XOR \$x XOR \$y x ⊕ y = (x ∨ y) ∧ ¬(x ∧ y) •  •  M

NOR, → Truth table x → y = (¬x ∨ y) M

XOR, ⊕ Truth table x ⊕ y = (x ∨ y) ∧ ¬(x ∧ y) M

XNOR, ≡ Truth table x ≡ y = ¬(x ⊕ y) M

Questions? diveinto@mediotype.com M

1.  TRUE XOR TRUE = ? 2.  ¬TRUE ⊕ FALSE = ? 3.  (FALSE ∨ FALSE) ≡ TRUE = ? 4.  TRUE → FALSE = ? 5.  TRUE XOR TRUE XNOR FALSE = ? Exercise M

 User name: Comment:

August 22, 2017

August 22, 2017

August 22, 2017

August 22, 2017

August 22, 2017

August 2, 2017

## Related pages

### Introduction to Boolean Algebra : Boolean Algebra ...

Mathematical rules are based on the defining limits we place on the particular numerical quantities dealt with. When we say that 1 + 1 = 2 or 3 + 4 = 7, we ...

### Lecture 1: An Introduction to Boolean Algebra - Imperial

Lecture 1: An Introduction to Boolean Algebra The operation of almost all modern digital computers is based on two-valued or binary systems. Binary systems

### Introduction to Boolean Algebras - weltbild.de

Bücher bei Weltbild: Jetzt Introduction to Boolean Algebras versandkostenfrei online kaufen & per Rechnung bezahlen bei Weltbild, Ihrem Bücher-Spezialisten!

### Introduction to Boolean Algebras Undergraduate Texts in ...

Steven Givant - Introduction to Boolean Algebras (Undergraduate Texts in Mathematics) jetzt kaufen. ISBN: 9781441923240, Fremdsprachige Bücher - Logik

### Introduction to Boolean Algebras (Undergraduate Texts in ...

Buy Introduction to Boolean Algebras (Undergraduate Texts in Mathematics) on Amazon.com FREE SHIPPING on qualified orders

### Introduction to Boolean Algebras - Buchhandel.de - Steven ...

Steven Givant, Paul Halmos - Introduction to Boolean Algebras - 2009 - Buchhandel.de - Bücher lokal kaufen

### 1 + 1 = 1 An Introduction to Boolean Algebra and Switching ...

1 + 1 = 1 An Introduction to Boolean Algebra and Switching Circuits was originally published by Williamsville Publishing Company as part of their popular ...

### Introduction to Boolean Algebras | Steven Givant | Springer

Provides a friendly introduction to Boolean algebras; Includes hundreds of exercises and a solutions manual; Contains background chapters on topology and ...