advertisement

Guia Tp Matematicas Fisica

50 %
50 %
advertisement
Information about Guia Tp Matematicas Fisica

Published on May 19, 2008

Author: Camilo

Source: slideshare.net

advertisement

UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE CIENCIAS VETERINARIAS GUIA DE TRABAJOS PRACTICOS MATEMATICAS-FISICA AÑO 2007 DICTADO POR DOCENTES DE LA CATEDRA DE INTRODUCCION A LA BIOFISICA A CARGO OBJETIVO GENERAL DEL DR. MIGUEL ANGEL NOIA

OBJETIVO GENERAL ? Se pretende que el alumno reafirme y/o adquiera conocimientos básicos matemáticos y que pueda aplicarlos en las diferentes asignaturas que así lo requieran. OBJETIVOS ESPECÍFICOS ? Que el alumno conozca e interprete: - el manejo de las distintas ecuaciones - la representación gráfica de funciones - las propiedades de los logaritmos - el uso de la notación científica - el uso de unidades físicas CONTENIDOS ? Potenciación ? Radicación ? Notación científica. Sistema Métrico Decimal. Unidades ? Ecuaciones. Aplicación a Leyes Físicas ( Leyes de Ohm, Faraday y Ley de Coulomb) ? Ecuaciones algebraicas de primer grado con una incógnita ? Sistemas de ecuaciones lineales ? Ecuaciones algebraicas de segundo grado ? Funciones ? Tipos de Funciones: lineales y exponenciales ? Representación gráfica de funciones: ecuación de la recta ? Progresiones aritméticas y geométricas ? Logaritmos ? Manejo de ecuaciones exponenciales ? Ejercicios de Aplicación.

POTENCIACIÓN: n exponente A base Debe multiplicarse la base tantas veces como lo indica el exponente: A3 = A A A An = A A A ...... n veces Propiedades: 1) La potenciación no es distributiva con respecto a la suma (A + B)n ? An + B n Lo correcto es: (5 + 3)2 = 82 = 64 Para comprobar que la potencia no es distributiva con respecto a la suma podemos desarrollar el Binomio de Newton: (5 + 3)2 = 5 2 + 2.5.3 + 32 = 25 + 30 + 9 = 64 Que se define como el cuadrado del primero, más el duplo del primero por el segundo, más el cuadrado del segundo. 2) La potenciación no es distributiva con respecto a la resta (A – B)n ? An – Bn Lo correcto es: (5 –2) 2 = 32 = 9; o aplicando el Binomio de Newton: 52 – 2 . 5. 2 + (-2)2 = 25 – 20 + 4 = 9 3) La potenciación es distributiva con respecto al producto (A . B)n = An . Bn Ej: (2 . 3)2 = 22 . 32 = 4 . 9 = 36 ó 62 = 36 4) La potenciación es distributiva con respecto al cociente. A n = An B Bn 2 Ej: 7 = 7 2 = 49 = 3, 0625 ó 1,75 2 = 3,0625 4 42 16 5) El producto de potencias de igual base, es igual a otra potencia de la misma base cuyo exponente es la suma algebraica de los exponentes dados: A x . A y. A z = A (x + y + z) Ej: 2 2 . 2 –3 . 2 4 . 2 -1 = 2 2 + (-3) + 4 + (-1) = 2 2 = 4 6) Cociente de potencias de igual base, es igual a otra potencia de igual base cuyo exponente es la diferencia algebraica entre el exponente del dividendo y el exponente del divisor.

A x = A x –y Ay Ej : 8 4 = 8 4 – 6 = 8 –2 = 1 2 = 1 = 1. 86 8 82 16 Recordemos que: - La potencia con exponente negativo es igual a la inversa de la base elevada a dicha potencia como exponente positivo (como en el ejemplo dado arriba). - Todo número elevado a la 0 es igual a 1: Ej: 5 0 = 1 7) Potencia con exponente fraccionario positivo: Una potencia cuyo exponente es fraccionario positivo, es igual a una raíz cuyo índice es el denominador de la fracción y cuyo numerador es el exponente de la cantidad subradical. Ej: A 3/2 = 2 A3 8) Potencia con exponente fraccionario negativo: 1 –3/4 Ej: A = 4 A 3 9) Potencia de otra potencia: Es igual a otra potencia de la misma base cuyo exponente es igual al producto de los exponentes dados. Ej: (A2)3 = A6 (A2) –1 = A-2 = (1/A) 2 RADICACIÓN El resultado de la raíz enésima de un número real, es un número cuya potencia enésima es igual al número dado. n ?A = B si Bn = A Propiedades: 1) La radicación no es distributiva con respecto a la suma. _____ __ n A + B ? n A + n B ; lo correcto es: ? 2 +7 = ? 9 = 3 2) La radicación no es distributiva con respecto a la resta n A -B ? n A - n B ; lo correcto es 120 - 20 = 100 = 10

3) La radicación es distributiva con respecto al producto n n n n A.B.C = A . B . C 4) La radicación es distributiva con respecto al cociente n n n A = A : B B Recordar: - Cuando el índice de la raíz es par, el resultado puede ser tanto negativo como positivo: Ej: 2 4 = ? 2 pues (-2)2 = 22 = 4 - Cuando el índice de la raíz es par y el radicando negativo no tiene solución real: 2 Ej: - 5 = no tiene solución en los números reales - Cuando el índice de la raíz es impar y el radicando negativo tiene solución negativa: 3 Ej: -8 = - 2 pues (-2)3 = -8 5) la potencia n de la raíz n de un número real es igual a dicho número n n Ej: A = A 6) Raíz de otra raíz: se multiplican los índices de las raíces Ej: 2 3 A = 6 A NOTACIÓN CIENTÍFICA: En muchas ciencias se emplean números muy grandes o muy pequeños, que son muy difíciles de escribir y, que además, es muy delicado trabajar con ellos. Para expresar números de muchas cifras y poder simplificar operaciones, se utiliza normalmente la forma de producto de las cifras significativas por una potencia de 10, lo que se denomina Notación científica. Ej: 358000 = 3,58 x 105 0,0000358 = 3,58 x 10 –5

Siempre se deja una cifra significativa (distinta de cero) antes de la coma, y se acompaña el número resultante con un factor de 10 elevado a un exponente igual al número de lugares que se ha corrido la coma. El exponente es positivo si se han corrido hacia la izquierda, y negativo si fue hacia la derecha. SISTEMA METRICO DECIMAL. Unidades UNIDADES: Para la física y la química, en su calidad de ciencias experimentales, la medida constituye una operación fundamental. Sus descripciones del mundo físico se refieren a magnitudes o propiedades medibles. MEDIR: Es el proceso de hallar el numero que define una propiedad y consiste en comparar a esta magnitud con otra de la misma especie, que se elige como termino de comparación. MAGNITUD: Es la propiedad de un sistema que puede ser medida y expresada por un numero y unidad correspondiente. UNIDAD DE MEDIDA: Es la cantidad determinada de por ej. Una cierta longitud, masa, tiempo, etc., adoptada como patrón de medida para otra de la misma clase. Existen magnitudes de base o fundamentales (elegidas convencionalmente) ej. Masa, tiempo, y longitud. Otras son las magnitudes derivadas, (se obtienen de las magnitudes de base por medio de operaciones matemáticas). Ej, velocidad, aceleración, superficie, volumen, fuerza, etc., MAGNITUDES ESCALARES Y VECTORIALES: MAGNITUDES ESCALARES: Quedan determinadas por un número y su unidad correspondiente. Ej. Masa, tiempo, temperatura, longitud, densidad, volumen, etc., La alzada de un caballo es de 1,70 m de alto; un caballo tarda 2 seg. en recorrer 100 m, un gato tiene una temperatura variable entre 38-39 ° C. MAGNITUDES VECTORIALES: Quedan determinadas por un numero, su unidad correspondiente, dirección, sentido, y punto de aplicación. Línea de acción B

Ej., una fuerza es una magnitud vectorial, que necesita para quedar determinada un punto de aplicación B, dirección paralela al piso, sentido hacia la izquierda indicado por la flecha, valor numérico y unidad 5 Newton (N). ? Indica vector Línea de acción: recta de longitud indefinida; el vector fuerza es un segmento de dicha recta. Ejemplos: Fuerza, velocidad, aceleración, presión, peso especifico, peso, etc. Un gas encerrado en un recipiente ejerce una fuerza sobre las paredes del recipiente que lo contiene, un animal ejerce una fuerza sobre una persona arrastrándola. El peso de un cuerpo es la fuerza de atracción gravitatoria ejercida por la Tierra P ? m. g Longitud: distancia entre dos puntos determinados. La escala de longitudes es Km; Hm; Dam; m; dm; cm; mm; ? ; m? ; Å Tiempo: intervalo transcurrido entre dos hechos sucesivos. 1 hora = 60 MINUTOS, 1 minuto = 60 seg. Velocidad: Es el cociente entre la distancia o desplazamiento recorrido por un móvil y el tiempo empleado en recorrerlo. ?x V = ?t Aceleración: Cambio de velocidad por unidad de tiempo. ? v a ? ? t Masa: Cantidad de materia presente en un cuerpo. Fuerza: Empuje o arrastre que actúa sobre un cuerpo modificando su movimiento. F ? m .A Peso: Es la fuerza con que son atraídos los objetos por acción de la gravedad. P ? m.g

Densidad: Es el cociente entre la masa y el volumen de un cuerpo. ? = masa / volumen Peso Especifico = Es el cociente entre el peso de un cuerpo y el volumen que ocupa. ? ? p/v Relación entre ? y ? ? ? p / v ? m.g / v ? ? .g El peso específico depende de la gravedad, que varia de un lugar a otro de la tierra (latitud) Presión: Cociente entre la fuerza ejercida perpendicularmente sobre una superficie y el área de esa superficie. P? F /S Presión = Fuerza / Superficie. Trabajo: Es el producto del desplazamiento de un cuerpo por la componente de la fuerza en dirección del desplazamiento. W ? F .d . cos? ? F ) ? ? Fcos ? Potencia: Es el cociente entre el trabajo realizado y el tiempo empleado en realizarlo . Potencia = W / tiempo. Energía cinética: Es la energía que tiene un cuerpo debido a su movimiento. Ec = ½ m.v2 m = masa del cuerpo que se mueve con velocidad v.

Energía Potencial gravitatoria = m.g.h. Es la energía que tiene un cuerpo debido a su posición. m= masa del objeto que se encuentra a cierta altura h ( o posición). Ep ? m.g.h g = Aceleración de la gravedad. También puede expresarse como Ep ? P.h Caudal: Es el volumen del fluido (gas o liquido por unidad de tiempo) C = Vol / tiempo Ecuación de continuidad: Es el producto de la velocidad del fluido por la sección que atraviesa. C = Vel. . Sec v1.s1 = v2.s2 v = velocidad ; s = sección S1 S2 V1 v2 La velocidad del fluido es mayor cuanto menor sea la sección transversal Ejercicios de aplicación 1) Si la sangre de caballo contiene 7 ·106 glóbulos rojos por mm3 ¿qué cantidad de GR (expresado en notación científica) circulan en 40 litros de sangre (volumen sanguíneo del caballo)? 2) 1 mm3 -------------------- 7 · 106 GR 40 · 106 mm3 ----------- X = 2.8 · 1014 = 280 · 1012 GR 40 ? = 40 dm3 = 40 ·106 mm3 3) Si la sangre tarda 2.5 seg en atravesar un capilar de 1 mm de longitud, calcular la velocidad de la sangre en: a) mm / seg; b) m / seg; c) cm / seg; d) nm / seg; e) m / min; f) km / h a) veloc = long / tiempo = 1 mm / 2,5 seg = 0,4 mm / seg

b) 0,4 · 10–3 m/seg = 4 · 10–4 m/seg c) 0,4 · 10–1 cm/seg = 4 · 10–2 cm/seg d) 1 nm = 10–9 m 10–9 m------------------1 nm 4 · 10–4 m---------------X = 4 · 105 nm v = 4 · 105 nm/seg e) v = 4 · 10–4 m / seg v = 4 · 10–4 m / 0,0166 min = 2,40 · 10–2 m / min f) v = 2,40 · 10–5 km / 0,0166 h = 1,45 · 10–3 60 min----------------1 h 1min-------------------x = 1 / 60 = 0,0166 h 60 seg----------------1 min 1 seg------------------x = 1 / 60 = 0,0166 min 4) Calcular el peso de un perro de 8,5 kg masa, en la tierra (a) y en la luna (b) (g en la luna= 164 cm/s2). Expresar el resultado en: c.g.s; M.K.S. y SI. a) P ? m.g Pt ? 8,5 kg . 9,8 m / s 2 = 83,3 New (M.K.S./S.I.) b) Pl ? 8,5 kg .1,64 m / s 2 = 13,94 New (M.K.S./S.I.) 1 New-----------------------105 dina 83,3 New-------------------X = 83,3 . 105 dina (C.G.S.) 1 New-----------------------105 dina 13,94 New-----------------X = 13,94 . 105 dina (C.G.S.)

Tabla de unidades c.g.s. M.K.S. S.I. Masa g Kg Kg Tiempo s s s Longitud cm m m Superficie cm2 m2 m2 Volumen cm3 m3 m3 d cm m m v ? ? cm ? s ? 1 ? m ?s?1 ? m ?s?1 t s s s v cm m m a? 2 ? cm ? s ? 2 2 ? m ?s? 2 2 ? m ?s? 2 t s s s g ? cm Kg ? m Kg ? m Fuerza F ? m ? a 2 ? dina ? New ? New s s2 s2 g ? cm 2 ? dina ? cm Kg ? m 2 Kg ? m 2 s2 ? New ? m ? New ? m Trabajo W ? F ? d s2 s2 ? ergio ? Joule ? Joule F dina New New Presión P? ? baria ? Pascal ? Pascal S cm 2 m2 m2 W ergio Joule Joule Potencia Pot ? ? Watt ? Watt t s s s g ? cm Kg ? m Kg ? m Peso P ? m ? g ? dina ? New ? New s2 s2 s2 m g Kg Kg Densidad ? ? 3 ? g ? cm ? 3 3 ? Kg ? m ? 3 3 ? Kg ? m ? 3 V cm m m dina Peso P ? dina ? cm ? 3 New New ? ? cm 3 ? New ? m ? 3 ? New ? m ? 3 Específico V m3 m3 dina ? cm New ? m New ? m Viscosidad F ?d cm 2 ? cm ? s ? 1 m 2 ?m ? s ? 1 m 2 ?m ? s ? 1 ? ? dinámica sec? v ? g ? cm ? 1 ? s ? 1 ? Kg ? m ? 1 ? s ? 1 = Kg . m–1 . s–1 ? poise Viscosidad ? cm 2 ?s ? 1 ? ? m 2 ?s ? 1 m 2 ?s ? 1 cinemática ? ? stok Tensión F dina New New Superficial ? ? l cm m m

Vol cm 3 m3 m3 Caudal C? ? cm 3 ? s ? 1 ? m3 ? s ? 1 ? m 3 ?s ? 1 t s s s Energía g ? cm 2 Kg ? m 2 Kg ? m 2 Ec ? 1 m ?v 2 ? ergio ? Joule ? Joule Cinética 2 s 2 s 2 s 2 g ? cm ? cm Energía ? ergio kg ? m ? m kg ? m ? m Ep =mgh s2 ? Joule ? Joule Potencial s2 s2 Factores de conversión: 1Å = 10–8 cm 1Å2=10–16 cm2 1 Å3 = 10–24 cm3 1µ = 10–6 m 1µ2 = 10–12 cm2 1µ3 = 10–18 m3 1nm = 10–9 m 1nm2 = 10–18 m2 1nm3 = 10–27 m3 1 g ? 1 g ?980 cm ? s ? 2 ? 980 dinas 1 Kg ? 1 Kg ?9,8 m ? s ? 2 ? 9,8 New 1 Atm ? 760 mmHg ? 760 torr 1 mmHg ? 1torr P ? ? ? g ?h ? 13,6 g ? cm ? 3 ?980 cm ? s ? 2 ? 76 cm deHg ? 1,013 ?10 6 dinas ? cm ? 2 ? 1,013 ?10 6 barias ? 1,013bar ? 1,013 ?105 N ? m ? 2 ? 1,013 ?105 Pascal 1 atm ? 1013 milibares (mb) ? 1013 hectopascales (hPa) dina ? g ? cm ? s ? 2 New ? Kg ? m ? s ? 2 1 Kg ? m ? s ? 2 ? 1000 g ?100 cm ? s ? 2 1 New ? 10 5 dinas 1 Kg ? m 2 ? s ? 2 ? 1000 g ?10000 cm 2 ? s ? 2 1 J ? 107 ergio

ECUACIONES Expresiones algebraicas: Se llama expresión algebraica a una combinación de letras y/o números, vinculados entre sí por las operaciones de suma, resta, producto, cociente, potencia e índice radical. Ej: 4 a 2 b – 2b + 8 c Ecuación algebraica: Se llama así a la igualdad entre dos expresiones algebraicas, que sólo se verifica para determinados valores de algunas de sus letras, llamadas incógnitas. Los valores de las incógnitas que satisfacen la ecuación se llaman raíces de la ecuación. Ej: 3x - 2 = 4 ? ecuación con raíz x = 2 Las normas a seguir para resolver este tipo de ecuaciones son las siguientes: a) Todo término que se encuentra en un miembro multiplicando pasará al otro miembro dividiendo Ej: a = bx ? a/b = x b) Todo término que se encuentra en un miembro dividiendo pasará al otro miembro multiplicando. Ej: x / b = a ? x = a.b c) Todo término que se encuentra en un miembro sumando pasará al otro miembro restando Ej: x + a = b ? x=b -a d) Todo término que se encuentra en un miembro restando pasará al otro miembro sumando. Ej: x - a = b ? x = b+a e) En primer lugar deben pasar los términos que estén multiplicando o dividiendo f) En el caso de encontrarse una operación de suma o resta dentro de un paréntesis en uno de los miembros, puede resolverse o bien, puede pasarse el total del paréntesis al otro miembro. Ej: (a + b) x = c ? x = c . (a+b) Recordar la regla de los signos: + x + = + +/+ = + +x - = - + / - = - - x -= + - / - = +

Aplicación: Ley de Coulomb: I ra. Ley de Ohm: II da. Ley Ohm: Ley de Joule: Leyes de Faraday: Eq . I . t m? ? Eq . elect.qco . I . t F ECUACIONES ALGEBRAICAS DE PRIMER GRADO CON UNA INCÓGNITA Las ecuaciones algebraicas enteras pueden clasificarse según su grado. El grado está dado por el mayor exponente al que está elevada la incógnita. Ej: 5 x –3 = 2 x ? es una ecuación de primer grado 3 x2 – 8 x = 0 ? es una ecuación de segundo grado Toda ecuación de primer grado con una incógnita, si tiene solución, ésta es única. Para resolver una ecuación de este tipo, hay que reducirla (mediante pasaje de términos) a una expresión de la forma:

ax + b = 0 Si a ? 0 la raíz de la ecuación es x = -b/a Si a = 0 y b ? 0 la ecuación no tiene solución. Si a = b = 0, la ecuación es una identidad que se satisface para cualquier valor de x. Ejemplos: 1) Resolver la ecuación: 7x – 3 = 21x -9 Hacemos: 7x –21x = -9 + 3 ? -14x = - 6 ? x = 3/ 7 es la raíz 2) Resolver 2/5 x – 1 = 1/4 x + 2 2/5 x - 1/4 x = 2 + 1 8x - 5x = 3 20 3x = 3 ? x = 20 3) Resolver: 15 – x = 7 –x x - 18 x–8 La llevamos a una ecuación de primer grado haciendo: (15 – x) (x –8) = (7 – x) (x – 18) Aplicamos propiedad distributiva: 15x + 8x – 18 x = –126 + 120 5x = –6 x = –6 5 Observación: Es importante verificar las soluciones que se obtengan para cada ecuación. Por ejemplo, para la ecuación (1): 7. 3/7 –3 = 21. 3/7 –9 3 –3 = 9 – 9 ? 0=0 SISTEMAS DE ECUACIONES LINEALES Sistemas de dos ecuaciones con dos incógnitas El conjunto de dos ecuaciones: a1x + b1y = c1 a2x + b2y = c2 Constituye un sistema de dos ecuaciones lineales de primer grado con dos incógnitas “x” e “y”. La solución del sistema es el par de valores que deben tomar x e y para satisfacer ambas ecuaciones simultáneamente. Sea el sistema 3x + 2y = 78 4x + y = 54 La ecuación 3x + 2y = 78 tiene infinitas soluciones. Por ejemplo: x = 0, y = 39; x = 10, y = 24; x = 30, y = -6; ....... La ecuación 4x + y = 54 también tiene infinitas soluciones. Por ejemplo: x = 0,

y = 54; x = 10, y = 14; x = 6, y = 30; ....... De todas estas infinitas soluciones de cada ecuación, sólo hay una que coincide en ambas: x =6, y = 30. Esta es la solución del sistema. Los métodos para resolver sistemas de ecuaciones consisten en obtener la solución en forma rápida y automática, sin recurrir al tanteo. Método de sustitución: Sea el sistema: 3x + 2y = 78 (1) 4x + y = 54 (2) de la ecuación (2) expresamos “y” en función de “x”: y = 54 – 4x (3) sustituimos “y” en la ecuación (1) por esta expresión: 3x + 2(54 – 4x) = 78 Resolvemos esta ecuación con una incógnita: 3x + 108 – 8x = 78 3x – 8x = 78 – 108 ? -5x = -30 y por lo tanto x = 6 Este valor de “x” hallado se sustituye en la ecuación (3) que es aquella en la que aparecía despejada “y”: y = 54 – 4 . 6 ? y = 54 – 24 ? y = 30 La solución es por lo tanto x = 6; y = 30 Resumen: El método consiste en expresar una incógnita en función de la otra, despejándola de una de las ecuaciones. Con esa expresión, reemplazándola en la otra ecuación, se halla su valor. Sistemas de ecuaciones con infinitas soluciones. Sea el sistema: 3x + 5y = 4 6x + 10y = 8 Se puede observar que las dos ecuaciones son prácticamente la misma: una de ellas es la otra multiplicada por un número. En este caso, las infinitas soluciones de una serán también soluciones de la otra. El sistema tiene infinitas soluciones y se llama sistema compatible indeterminado. Sistemas de ecuaciones sin solución: Sea el sistema 3x –5y = 4 3x – 5y = 2 En él se puede observar que si 3x –5y es igual a 4, es imposible que 3x –5y también sea igual a 2. Por lo tanto no es posible encontrar una solución común a ambas ecuaciones. El sistema no tiene solución y se llama incompatible.

Al resolverlo se llega a una expresión del tipo 0.x = 2 la cual es un absurdo para todo valor de x. ECUACION ALGEBRAICA DE SEGUNDO GRADO CON UNA INCÓGNITA Llamamos ecuación algebraica de segundo grado a la ecuación: ax2 + bx +c = 0 con a, b, c números reales y a ? 0 Para hallar las raíces de una ecuación de segundo grado, aplicamos la fórmula: x1,2 = -b ± v b 2 – 4.a.c 2.a Esta resolvente nos dará los valores de las dos raíces de la ecuación de segundo grado. Ejemplos: 1) 4 x2 – 5x - 6 = 0 x1,2 = 5 ± v 25 – 4.4.(-6) 8 las raíces son: x1 = -3/4; x 2 = 2 2) x2 -2x + 5 = 0 x 1,2 = 2 ±v 4- 4.1.5 = 2 ± v - 16 2 2 No tiene soluciones reales pues v - 16 no es un número real. 3) 9x2 + 6x + 1 = 0 ________ __ x 1,2 = -6 ±v 36 –4 .9.1 = - 6 ±v 0 18 18 la raíz es: x = -1/3 Estudio de las raíces de la ecuación de segundo grado Llamamos discriminante de la ecuación cuadrática, y lo simbolizamos con “? ” a la expresión: ? = b2 – 4 a. c que en la fórmula resolverte se encuentra debajo del signo radical. Analizando nuevamente los ejemplos anteriores: 1) 4 x2 – 5x - 6 = 0 _______ x = 5 ± v 25 + 96 8

____ x = 5 ±v 121 ? >0 8 x1 = -3/4 ; x2 = 2 2) x2 -2x + 5 = 0 x 1,2 = 2 ±v 4 - 20 2 x1,2 = 2 ± v - 16 ? < 0 no tiene soluciones reales 2 3) 9x2 + 6x + 1 = 0 ______ x 1,2 = -6 ±v 36 – 36 18 ____ x 1,2 = -6 ±v 0 ? =0 18 x1 = x2 = - 1/3 En ellos podemos observar que si: ? > 0, la ecuación tiene dos raíces reales y distintas. ? < 0, la ecuación no tiene raíces reales (sus raíces son complejas) ? = 0, la ecuación tiene dos raíces reales iguales Observación: - Cuando b = 0 puede calcularse , además de con la fórmula descripta, como sigue: ax2 + c = 0 _____ x = ±v - c/a (si c ó a es un número negativo) - Cuando c = 0 puede resolverse ax2 + bx = 0 sacando factor común x: x (ax +b) = 0 Entonces, para que x (ax + b) sea igual a 0: x = 0 ó (ax + b) = 0 x = -b/a Las raíces son: x1 = 0 y x2 = -b/a

FUNCIONES 1- Variables y constantes En matemática se define una variable como un conjunto de números representados indistintamente por un símbolo. Cada uno de estos números es un valor de la variable. Una constante, en cambio, es un solo número. Desde el punto de vista físico y mediante ejemplos es muy fácil comprender estos conceptos. Supongamos que se estudia la variación de volumen de un gas cuando se lo calienta manteniendo fija la presión. En este caso, la temperatura y el volumen son variables y la presión es una constante. Desde el punto de vista físico, son variables las magnitudes cuyo valor cambia durante el proceso que se estudia, mientras que se llaman constantes a aquellos cuyo valor se mantiene fijo. Es necesario tener en cuenta que la misma magnitud puede ser constante en un proceso y variable en otro. 2- Concepto de función Frecuentemente ocurre que dos magnitudes están relacionadas entre sí de modo tal que, dados los valores de una de ellas quedan determinados los de la otra. En ese caso se dice que la segunda es una función de la primera, y a ésta se la llama “variable independiente”. Si representamos con “y” la función y con “x”, la variable independiente, esta relación se expresa: y = f (x) En muchos casos, a cada valor de una de las variables, corresponde uno de la otra y a cada valor de la segunda corresponde uno de la primera. Se dice entonces que existe correspondencia biunívoca entre los valores de ambas variables. Pero esta condición no siempre se cumple. Por ejemplo, en el movimiento vibratorio armónico cuya representación gráfica se muestra en la figura A1, a cada valor del tiempo t corresponde un solo valor de la elongación y, de modo que podemos escribir: y = f (t) Pero a cada valor de y no corresponde un solo valor de t. En la figura se muestra, por ejemplo, que al valor y 1 corresponden los tiempos t1; t2; t3; etc. En este caso, no existe correspondencia biunívoca. En general, cuando la correspondencia es biunívoca resulta posible durante la experimentación modificar arbitrariamente cualquiera de las dos variables, de modo que una puede ser considerada independiente y la otra constituye la función. Por ejemplo: si al estudiar la relación entre la presión y el volumen de un gas a temperatura constante se modifica a voluntad la presión y se observan los valores que toma el volumen, la primera es la variable independiente, mientras que el segundo es la función. Se escribe entonces: V = f (p) Si en cambio se fijan arbitrariamente los valores del volumen, éste será la variable independiente, mientras que los valores de la presión quedan determinados. Se escribe entonces: p = f (V)

En muchas oportunidades, el valor de una variable queda determinado por los valores de varias otras. Esto ocurre, por ejemplo, con el caudal “C” de un líquido que circula a través de un tubo, el cual depende de la diferencia de presión (p, de la longitud del tubo l, de su radio r y de la viscosidad del líquido. Se dice entonces que la variable es función de todas ellas y se escribe: C = f ((p, l, r,() 3- Tipos de funciones Los tipos de relaciones matemáticas que pueden ligar a dos magnitudes son muy diversos. Nosotros estudiaremos los casos más sencillos; que son los que emplearemos: Proporcionalidad directa Veamos, por ejemplo, cómo se puede estudiar la relación entre el tiempo y el gasto de oxígeno por un animal. Para ello se miden los volúmenes de oxígeno consumidos en diferentes intervalos y con los datos así obtenidos se confecciona un cuadro de valores. Relación entre tiempo y consumo de oxígeno Tiempo (min) Volumen de oxígeno (l) 5 0,690 10 1,380 15 2,070 20 2,760 30 4,140 Observando este cuadro se comprueba que al duplicar el primer valor del tiempo (5 x 2 = 10) también se duplica el del volumen (0,690 x 2 = 1,380), relación que se cumple si se multiplica por cualquier otro número, En general se observa que si se divide el valor del volumen por el del tiempo que le corresponde, el cociente es siempre el mismo (verifícalo). Sobre esta base, establecemos la siguiente afirmación: “ Se dice que dos magnitudes son directamente proporcionales cuando el cociente entre los valores correspondientes es constante”. En nuestro ejemplo, representando con V 1, V 2, V3, etc., los valores del volumen y con t 1, t 2, t 3, etc. los del tiempo, se cumple: V 1 V2 V3 = = = k t1 t2 t3 Donde k es el valor constante de todos los cocientes. En forma más general para cualquier valor de V y de t, escribimos:

V =k t Y pasando t al segundo miembro: V=k.t Donde k es la constante de proporcionalidad y ésta es la ecuación que representa la proporcionalidad directa, la cual puede ser representada gráficamente (corresponde a una recta que pasa por el origen) 4,14 2,76 2,07 1,38 0,69 5 10 15 20 30 Fig. – Representación gráfica de la relación de proporcionalidad directa Función lineal En el siguiente cuadro se representan los resultados obtenidos al estudiar la relación entre el peso específico del plasma y su contenido de proteínas. Relación entre peso específico y contenido de proteínas del plasma: Peso específico Contenido de proteínas (g/cm3) (g / 100 cm3) 1,020 4,66 1,024 5,99 1,028 7,32 1,032 8,66 En este cuadro se observa que al aumentar el peso específico sube el contenido de proteínas, pero no existe proporcionalidad directa, pues los cocientes no son constantes, ya que el valor de la función está dado por la variable independiente multiplicada por una constante más otra constante. Cuando una variable se relaciona con otra de esta manera, se dice que es una función lineal de ésta.

“Una variable y es función lineal de otra x cuando ambas están ligadas por una relación de la forma: y =mx+b (Ecuación general de la recta) donde m y b son constantes “. Cuando x = 0 ? y = b que es la ordenada en el origen, es decir el punto en el cual la recta corta al eje de ordenadas y se lo llama término independiente. “m” es la tangente del ángulo formado por la recta y el eje de abscisas y recibe el nombre de pendiente de la recta. Si b = 0 ? y = m x (proporcionalidad directa) que es un caso particular de función lineal. y3 y3 y2 b y2 y1 y1 x1 x2 x3 x 1 x 2 x3 Proporcionalidad inversa En el cuadro se muestran los resultados obtenidos en un experimento al estudiar, en el perro, la relación entre la frecuencia cardíaca ? y el volumen sistólico Vsist. En la primera columna se han representado los valores de la ? expresados en ciclos por segundo (c/seg.). En la segunda columna figuran los Vsist medidos en cm3. Relación entre frecuencia cardíaca y volumen sistólico: Frecuencia cardíaca Volumen sistólico (c/seg.) (cm3) 1,2 9,08 1,5 7,27 1,9 5,73 2,1 5,19 2,4 4,54 2,6 4,19

En forma general al poner los dos valores de cualquier par, se puede escribir: ? . V sist = k donde k es una constante. Esta es la definición de proporcionalidad inversa: “Se dice que dos magnitudes son inversamente proporcionales cuando el producto entre los valores correspondientes es constante”. La representación gráfica de este tipo de función es una hipérbola que tiene los ejes de coordenadas por asíntotas. Gráfico de la proporcionalidad inversa Función exponencial Al hacer el estudio de crecimiento de una cepa de bacilos tíficos en caldo, se encontraron los datos que se muestran en el cuadro. En la primera columna figura el tiempo medido en minutos, contado a partir del momento en que las bacterias comienzan a reproducirse con regularidad. En la otra columna figura el número de bacterias por mm 3 de caldo. Relación entre el número de bacterias y el tiempo en un medio de cultivo: Tiempo Número de bacterias (min.) (bact /mm 3) 0 1,539 x 106 40 4,131 x 106 80 11,09 x 106 120 29,76 x 106 160 79,88 x 106 Se puede comprobar en este cuadro que el nº de bact / mm 3 N0 y el tiempo t están ligados por la relación:

N0 = (1,539 x 10 6) x 1,025 t En efecto, reemplazando t por sus valores de la primera columna, se obtienen los nº de bacterias correspondientes, que figuran en la segunda columna. En este tipo de relación la variable independiente figura como exponente. En forma general, una función exponencial se puede representar mediante y = a . bc x , donde a, b y c son constantes. El gráfico que representa esta relación es una curva llamada exponencial que en este caso va subiendo hacia la derecha cada vez con mayor pendiente. A veces se representa una relación parecida en la cual el exponente tiene signo negativo. En este caso, la curva va descendiendo hacia la derecha. Funciones como las vistas son muy frecuentes en biología y ellas se presentan en el proceso de crecimiento celular, en la acción de los fermentos, en la difusión de sustancias a través de membranas y en infinidad de otros procesos. Las funciones exponenciales también pueden ser representadas en forma logarítmica, ya que, utilizando el mismo ejemplo, el logaritmo del nº de bacterias es una función lineal del tiempo. Por lo tanto, si esta variable se representa en abcisas y en ordenadas, el logaritmo del nº de bacterias, se obtiene una recta. Para ello utilizamos papel semilogarítmico.

REPRESENTACIÓN GRÁFICA DE FUNCIONES: ECUACIÓN DE LA RECTA La representación gráfica permite una idea clara de cómo es una función con un solo golpe de vista. y = f (x) y = ax + b donde: x = variable independiente y = variable dependiente a= es la pendiente de inclinación de la recta, ésta es una constante, de lo contrario no sería una recta. Es el coeficiente del término independiente. b = ordenada al origen. Punto donde la recta intercepta el eje de las “y” Por ejemplo: y = 3x + 2 La ordenada al origen es 2 y la pendiente es 3. Para graficar esta función se debe diseñar una tabla de valores. Se asignan valores a la variable independiente “x” y se calcula “y”: x y = 3x + 2 2 3.2 +2 = 8 1 3.1 +2 = 5 0 3.0 +2 = 2 -1 3(-1) +2 = -1 -2 3(-2) +2 = -4

y 8- 7- 6- 5- 4- 3- 2- 1- -2 -1 1 2 x -1 - -2 - -3 - -4 - -5 - Deducción de la pendiente de una recta: Supongamos una recta que pasa por los puntos (x1; y 1) y (x 2; y2) y2 y1 a x1 x2 Si la ecuación de la recta en cualquier punto es: y = ax +b En los puntos dados debe ser y1 = ax1 + b y2 = ax2 + b Si restamos estas dos ecuaciones resulta: y2 – y1 = a (x2 – x1) De donde a = y 2 – y1 x 2 – x1 Si recordamos la definición de tangente de un ángulo como el cociente entre el cateto opuesto y el cateto adyacente a dicho ángulo en un triángulo rectángulo, resulta que la pendiente a es a = tg a donde a es el ángulo que forma la recta con el eje positivo de las x. En resumen: Pendiente a = ? y ? x Para el caso que estamos resolviendo:

a = 8–5 = 3 2–1 1 Ordenada al origen: es el valor de y cuando x vale 0, en este caso b = 2 Observación: Dependiendo de los datos que tengamos, podemos encontrar la ecuación de la recta como en los siguientes ejemplos: 1) m = 1/2 b=5 Entonces la ecuación de la recta es directamente: y = 1/2x + 5 2) m = -1 P: (1; 2) Buscamos la ordenada al origen reemplazando los valores del punto en la ecuación: 2 = -1(1) + b b = -1 - 2 = - 3 La ecuación de la recta es: y = - x - 3 2) P1: (1; 2) P2: (2; 4) Se puede utilizar la siguiente formula: x0 – x 1 = y 0 – y 1 x2 – x 1 y 2 – y1 reemplazando: x –1 = y –2 2–1 4 –2 2 (x – 1) = y – 2 y = 2x ? es la ecuación de la recta, y b = 0 PROGRESION ARITMETICA: Sucesión de números tales que cada uno de ellos se obtiene sumándole al anterior un número constante llamado RAZON DE LA PROGRESION. an = a 1 + r (n-1) an es el término que se desea hallar a1 = primer numero de la progresión n = números de términos de la progresión r = razón de la progresión Por ejemplo: 2-4-6-8-10-12-14-16-18, donde: a1 = 2 a2 = a 1 + r = 2 + 2 = 4 a3 = a 2 + r = 4 + 2 = 6 Otro ejemplo: Hallar el término número 10 de la progresión anterior: a10 = 2 + 2 ( 10 – 1) a10 = 2 + 2 . 9 = 2 + 18

a10= 20 PROGRESIÓN GEOMÉTRICA: Sucesión de números tales que cada uno de ellos se obtiene multiplicando el anterior por un valor constante llamado RAZON DE LA PROGRESIÓN. an = a 1 q n-1 an = término que se desea hallar a1 = primer término de la progresión n = números de términos de la progresión q = razón de la progresión Ejemplo: En una progresión geométrica el primer término es 3 y la razón es 2. Hallar el quinto término de dicha progresión. a5 = 3 . 2 5-1 a5 = 3 . 16 = 48 LOGARITMOS: Se llama logaritmo en base B de un número A a otro número n, tal que, B elevado a la n es igual a A, es decir: log B A = n ? Bn = A log 2 8 = 3 ? 23 = 8 log –2 4 = 2 ? (-2)2 = 4 Propiedades: 1) Los números negativos no tienen logaritmos en el campo de los números reales, ya que un número positivo cualquiera tomado como base y elevado a cualquier potencia positiva o negativa da siempre resultado positivo. Ej: Si log 2 (-4) = n ? se debe cumplir por definición que 2n = - 4 Como toda potencia de número positivo es positiva, ningún valor de n cumple la condición, es decir: log 2 ( -4) ? imposible en R 2) Los logaritmos de base negativa no dan soluciones a cualquier número; Ej: log –2 8 ? 3 ? (–2) 3 ? 8; sin embargo: log –2 (- 8) = 3 ? (-2) 3 = -8 es decir que si el número y la base son negativos, se obtiene el resultado correcto.

3) El logaritmo de la unidad de cualquier base es igual a 0. Ej: log x 1 = 0 ? x0 = 1 log 2 1 = 0 ? 20 =1 log -5 1 = 0 ? -50 =1 4) Logaritmo de base 1 a) Como toda potencia de base 1 es igual a 1, ningún valor de n cumple con la definición de logaritmo, es decir: log 1 5 ? n ya que 1 n ? 5 b) Si a es igual a 1: log 1 a ? log 1 1 = ? soluciones 5) El logaritmo de la inversa de un número, es el logaritmo de ese número cambiado de signo: Ej: log n 1/ A = - log n A Los logaritmos de números positivos y de base positiva diferente de 1, son siempre posibles 6) El logaritmo no es distributivo con respecto a la suma, resta, producto y cociente log ( A + B ) ? log A + log B log ( A - B ) ? log A - log B log ( A . B ) ? log A . log B log ( A / B ) ? log A / log B 7) a) El logaritmo de un producto es igual a la suma de los logaritmos de los factores: log A .B .C= log A + log B + log C b) El logaritmo de un cociente es igual a la diferencia entre el logaritmo del dividendo y el logaritmo del divisor: log A/B = log A – log B c) El logaritmo de una potencia es igual al producto del exponente por el logaritmo de la base: log A n = n. Log A d) El logaritmo de una raíz es igual al logaritmo de la cantidad subradical dividido por el índice de la raíz: log n B = log B / n Logaritmos decimales y logaritmos naturales: 1)Se llaman logaritmos decimales a los logaritmos en base 10. Se expresan como log X. Ej: log 10 X ? log X

De acuerdo a la definición, el logaritmo de la unidad seguida de ceros es directamente el número de ceros. Ej: log 1 = 0 ? 10 0 = 1 log 10 = 1 ? 10 1 = 10 log 100 = 2 ? 10 2 = 100 Los números positivos menores que uno (1) tienen logaritmos negativos. Estos son números enteros cuando se trata de la unidad precedida de ceros. Ej: log 0,1 = -1 ? 10 –1 = 0,1 log 0,01 = -1 ? 10 –2 = 0,01 Son irracionales cuando se trata de otros decimales como por ejemplo: log 0,02 = -1,6989... 2)Se llaman logaritmos Neperianos o Naturales a aquellos cuya base es el número e Ej: log e X donde el número e vale: 2,7182 Consideremos la expresión: b = (1+1/n) n Siendo n un número entero cualquiera, otorgándole valores crecientes a n, podemos hallar el correspondiente valor de b, así: Para n = 2 ? b = 2,25 n = 3 ? b = 2,3703 n = 10 ? b = 2,5937 n = 100 ? b = 2,7048 Se puede concluir que a medida que n aumenta, b también aumenta, en tanto que el valor de n crece sin límites, el valor de b se va aproximando al valor constante 2,7182. Por lo tanto este es el límite de b, cuando n tiende a infinito. A este límite se lo llama e. Cambio de base I) Por definición: log a X = y ? ay = X II) Aplicamos a ambos miembros el logaritmo en base b ( log b) Por propiedad uniforme: log b a y = log b X y . log b a = log b X , entonces despejando y: y = log b X/ log b a Recordando que en el primer paso y = log a X, entonces: Log a X = log b X / log b a En el caso particular de que a = e y que b = 10, entonces log e X = log 10 X / log 10 e

ln X = log X / log e ? ln X = log X / log 2,7182 ? ln X = log X / 0,4343 ? ln X = 2,303 log X ln X = log X / 0,4343 ? log X = 0,4343 ln X Ej: Si a = 2 y b = 10, entonces como: log a X = log b X / log b a se concluye que: Log 2 X = log X / log 2 MANEJO DE ECUACIONES EXPONENCIALES: Para calcular x en una función exponencial, debemos despejar la incógnita utilizando las propiedades de los logaritmos, como se realiza en el ejemplo: a) Dada la siguiente función que relaciona el crecimiento bacteriano en función del tiempo, B = B0 . e ? t encontrar el tiempo t en el cual la población aumenta el doble si ? = 0,5 h-1. Debo aplicar el logaritmo conveniente, entonces: Ln B = ln (B0. e ? t ) ? Ln (B0 . 2) = ln B0 + ? t ln e Ln B0 + ln2 – ln B0 = ? t ? ln 2 / ? = t ? t = 1,38 horas Las propiedades de los logaritmos se pueden utilizar, además, para simplificar la búsqueda del valor de x en ecuaciones con varios exponentes: ___ b) x = 32 2/3 . ? 53 . 0,1 - 2 0,8 Aplico log, pero debo recordar que no es distributivo con respecto a la resta, entonces: ___ Log (x + 2) = Log 32 . ? 53 . 0,1 2/3 0,8 log (x + 2) = 2/3. Log 32 + 3/2. Log 5 + log 0,1 – log 0,8 log (x + 2) = 1, 0034 + 1,0484 + (-1) – (- 0,0969) = 1,1487 x + 2 = antilog ( 1,1487) = 14,0842 x = 14, 0842 - 2 = 12, 0842

c) Ley de Lambert y Beer: I0 It Ia Ir It = I0 . e- ?? l c Donde: It = Intensidad de luz transmitida; I0 = Intensidad de luz incidente; e = base de los log naturales; ? = coeficiente de extinción molar; l = longitud o camino óptico; c = concentración de la solución. Ln It = ln I0 – (? l c) ln e 1 Ln It = ln I0 – (? l c) d) Aplicación a la determinación del pH: 10-pH = [ H +] -pH log 10 = log [ H +] 1 -pH = log [ H +] pH = - log [ H +] BIBLIOGRAFÍA - DE SIMONE – TURNER, Matemática 4. Editorial A-Z - TAPIA, N VÁSQUEZ de, Matemática 4. Editorial ESTRADA. - REPETTO – LINSKENS, Algebra y Geometría. Editorial KAPELUZ. - FRUMENTO, AS. Biofísica. Editorial MOSBY/DOYMA Libros -BERTELLO, L. F. Sistema Internacional de Unidades. Su Aplicación en el Área de la Salud. Ed. EUDEBA 1980 -MAISTEGUI – SÁBATO. FÍSICA. Ed. Kapeluz -DE AGUILAR LUCÍA. ARITMÉTICA ELEMENTAL. Olivari – Dominguez (Editores) 9° Ed. 1926

EJERCITACIÓN: 1. POTENCIACIÓN. Resolver: Rtas: –1/ 6 2/3 –1/2 1) 10 . 10 . 10 = 1 2) 10 1/4 . 10 –1/4 = 1 3) X /3 = 2 . 10 –5 . 10 –6 X = 6 . 10 –11 4) 2 = 5 . 10 –2 . 10 3 X = 4 . 10 7 X 10 9 5) 3/2 = X . 10 –3 . X = 7,5 . 10 2 2 10 . 10 –8 . 10 6 2 6) 2 . 10 –9 = 5 . 10-2 . 10 2 .10 3 X = -2,5 . 10 12 3 X (-3) 7) 2 . 10 3/4 . 10 –3/4 = 5. 10 –8 X =- 4 . 10 6 X .(-1) 10-3 . 102 8) 3,9 . 10 –1 . 10 –6 = X X = 1. 10 -1 1,3 . 3 . 10 –5 . 10 -1 9) 4 . 10 –2 . 2 . 10 –1 . 10 –5 = 25 X . 10 –9 X = 1,3 10 –1 24 10) X = 3/4 . 2 . 10 –7 X = 7,5 . 10 –1 1/2 10-8 . 10 11) 2,4 . 10 . 10-1 = X X = 1 . 10 24 . 10 –2 12) 5,6 = 10 2 . 10 –8 . 10 –7 X = 1,4 . 10 10 8X 2 . 10 –3 13) 3 . 10 –9 = X . X = 1,8 . 10 –10 1/3 2. 10 –2 14) 1/4 X = 4 . 10 –5 X = 1,6 . 10 –4 15) 5 . 10 –8 . 10 –9 = 10 34 . 10 –1 X = 1. 10 33 10 –17 2 X . 10 –1

16) 3,4. = 2 . 10 –5 . X = 1,5 . 10 –5 1,7 X . 2 3 . 10 . 10 –3 –7 17) 5 . 48 . 10 –2 = 2 . 10 –9 X = 1 . 10 –9 2,4 2X 18) 5 . 10 –1 = 3 X . 10 –3 X = 8,33. 10 2 . 10 –3 10 –3 19 ) 2/3 . X = 5/2 . 10 –2 X = 3,75 10 –1 10 –2 . 10 –1 20) X (-3) = 1/2 . 5 . 10 –2 X = -3,3 . 10 7 2/5 10 –3 . 10 –7 2. Expresar en NOTACIÓN CIENTÍFICA (con 1 sólo dígito y en forma exponencial) Rtas: 1) 0,03 = 3. 10 –2 2) 3,1 . 10 –2 . 10 –3 = 3,1 . 10 –5 3) 10 –4 = 1.10-4 4) 5,8 . 10 –9 . 10 –2 = 5,8. 10 –11 5) 48,3 . 10 –9 = 4,83 . 10 –8 6) 563.10 –2 = 5,63 ó 5,63 . 100 7) 4839 . 10-4 = 4,839. 10 –1 8) una millonésima: 1.10-6 9) un millón: 1.106 10) diez mil : 1. 104 11) una centésima: 1.10-2 12) 100 = 1.102 13) 0,002 . 10 –1 = 2 . 10 –4 14) 57.10 –1 = 5,7 ó 5,7.100 15) 6,3 . 10 –2 . 10 4 = 6,3 . 102

16) 49 . 10 5 = 4,9 . 106 17) una diez milésima: 1. 10 –4 18) 4.535.000 x 10 –6 = 4,535 19) 0,005 . 102 = 5 . 10 –1 20) 0,08 . 10 –8 = 8 .10 –10 EJERCITACIÓN DE UNIDADES 1) Si la longitud de onda de una radiación es de 520nm a) A cuántos mµ dicha longitud de onda. b) A cuántos Å corresponde dicha longitud de onda. Rta: a) 520 mµ; b) 5200Å 2) Calcular la presión en atmósferas en barias que ejerce una columna de 76 cm de Hg d Hg = 13,6 g/ cm3 g= 980cm/seg2 Rta: 1 atm; 1,013.106 barias 3) Si la presión atmosférica es de 755 mmHg. Calcular dicha presión en: a) barias b) bar c) mbar d) Pa e) hPa f) Kpa Rta: a) 1,0028.106 ; b) 1,0028; c) 1002,8 ; d) 1,0028.105 e)1,0028 103 f) 1,0028. 102 o 100,28 4) La plata tiene una densidad de 10,5 g/cm3, por lo tanto la masa de 200cm3 de Plata es de....................................mg. Rta : 2,1.106 5) Calcular el volumen de una célula de Escherichia Coli si tiene forma de un cilindro de 2µ de longitud y 1µ de diámetro (volumen de un cilindro= p r2 l). Expresar los resultados en: a) µ3 b) mm3 c) nm3 d) mµ3 e) Å3 Rta :a) 1,57 ; b) 1,57.10-9 ; c) 1,57.109; d) 1,57.109 ; e) 1,57.1012 6) La velocidad de la luz es de 300.000 km/seg. Expresar en a) cm/seg b)km/h d)m/min ; e) m/seg.

Rta: 3.1010cm/seg b) 1,08.109 km/h c) 1,8.1010 m/min d) 3.108m/seg 7) Indicar con v y f si son verdaderas o falsas las siguientes proposiciones: a) Un cuerpo que tiene masa de 30 kg en la tierra, tiene una masa de 30 kg en la luna. b) Un cuerpo que tiene un peso de 294 Newton en la tierra, tiene un peso de 294 Newton en la luna. c) Un cuerpo que tiene un peso de 294 Newton en la tierra, tiene una masa de 30 kg en la luna. d) Un cuerpo que tiene un peso de 294 Newton en la luna, tiene una masa de 30 Kg en la tierra. Datos: g en la tierra = 9,8 m/seg2 y g en la luna = 1,67 m/seg2 Rta: a) V b) F c) V d) F 8) Transformar a. 3,7.104 joule en calorías y en ergios b. 10-5 Newton en dinas c.100kcal en ergios y en joule Rta: a) 0,8880.104 = 8880 cal; 3,7.1011 ergios b) 1 dina c) 4,18.1012 ergios; 4,18.105 joule 9) Una fuerza de 600 N actúa sobre una superficie rectangular de 1m por 3m. ¿Cuál es la presión ejercida en: a) N/m2(pascal) b) dina/cm2(baria) c) mbar d) hPa Rta: a) 200; b) 2000; c) 2; d) 2 10) Calcular el trabajo (en watt.hora y Kw .hora) que consume una lámpara eléctrica de 100 watt, que funciona durante 10 horas. Rta: 1000 watt.hora; 1Kw . hora 11) Calcular la densidad de un líquido cuya viscosidad dinámica es de 1,14 cp y su viscosidad cinemática es de 0,014 cm2.s-1. Rta: 0,814 g.cm-3 12) La concentración normal de glóbulos rojos es un hombre es de aproximadamente de 5.106 glóbulos / mm3. Expresar dicha concentración en:

a) glóbulos /dm3 Rta: 5.1012 b) glóbulos / A3 Rta : 5.10-15 c) glóbulos / nm3 Rta: 5.10-12 d)glóbulos / cm3 Rta: 5.109 13) Calcular el caudal de la sangre en los capilares en cm3/seg en nm3/seg si la velocidad de la sangre es 0,375 mm/seg y la sección de los capilares es 800 cm2. Rta: 30cm3/seg; 3.104 mm3/seg 14) Calcular la energía cinética de un electrón de masa 9,1.10-28g y que se mueve con una velocidad de 4m/seg. Expresar el resultado en los sistemas: cgs; M.K.S. (S.I.) Rta: 7,28.10-23ergio; 7,28.10-30 joule; 7,28.10-30 joule. 3. ECUACIONES DE PRIMER GRADO. Calcular el valor de X Rtas.: 1) 1/3 . 10-2 = 104 . 103 X = 8,33 . 10 -13 X 1/4 . 10-2 2) X .2 . 3 = 2/4 . 1/3 . 10 2 X = 1,5 . 102 6.9 5 . 1/5 . 100 3) X - X + 2X = -3 + 7 X = 1,5 . 10 3 5 15 4) 1/3 X - 2/3 X - 4 = 4/3 X X = 2,4 . 100 5) X –3 = 4 . 5 X = 8,3 . 10 2 1/2 6) X - 5 = 1 - 1X X = 1,12 . 10 8 8 3 7) (X - 3) . 2 = (X - 5) . 3 X=9 8) 2X - 5X + 2X = - X - 20 X = - 1,92 .10 4 8 12 9) 1 ( - X – 3) = 1 ( 1/2 . 1/4) X = - 3,09 3 4 10) 1 = 2 . 1 X = 3,75 2X 3 5

11) – 1 – 13 = - 2X - 3X X = 9,88 3 4 12) – 5 = 2X - 6 - 4 X = 7,1 . 10 -1 X +1 X + 1 13) 5 X – 5 = 6 X - 6 X=1 5 6. (- 2) 14) - 2 X = 1 - 2X X= 3 3 2 15) X - 1 - 4 = 4 X - 2 X = - 2,45 . 10 3 8 16) 4 X - 2 - 1 = X - 2 - X + 1 X = - 10 3 2 ( -1) 17) 2/3 X - 3 = X - 8 X= -1 3 18) 13 - X = X - 3 + 5 X x = 1,527 5 3 19) 3 X - 2 – X = - X - 2 X – 6 X = - 1,85 2 3 20) 0,5 X - 2 X - 1 X = 10 X = - 1,5 . 10 3 2 21) 3 X = 9 X - 12 X= 8 4. SISTEMAS DE ECUACIONES LINEALES. Resolver por el método de sustitución y verificarlas. Rtas: 1) 3 x = 78 - 2 y x = 6 ; y = 30 y - 54 = - 4 x 2) 2 y = 14 - 5 x x = 4 ; y = -3 3 x - 4 y = 24

3) 3 x - y = 5 x = 1 ; y = -2 3= 5x + y 4) 11 + 2 x = -3 y x = 1/2 ; y = - 4 3 x - 11 = y 2 5) 2 x = - y + 3 x = 2 ; y = -1 3x - 5 = 2y 2 6) - 8 y = x + 1 x = -13/3 ; y = 5/12 -7 -2x = 4y 7) 13 - 3 x = - y x=5;y=2 2y = 9 - x 8) 2 x - 20 = - 2 y x=4;y=6 4x = 4 + 2 y 9) - 4 x - 1 y = 1 x = -3/5 ; y = 14/5 2 -y + 3 = -1x 3 10) 2 x - 1 = y x = -1 ; y = -3 - 1 y + 1 x = 1,3 2 5 11) 1/2 = - y + 5 x x = - 1/2 ; y = -3 - 10 = 2 x + 3 y 12) 1 y + 1 x = 0 x =1 ; y = -1 5 5 x - 2 = y 13) 9 = -y +x x=2;y=1 5 5 y - 9 = -2x 2 2

14) 5 x - 3 y = 7 x=4;y=2 4 4 2 4 - 3x= y 4 2 15) 1 x - 5 = - 1 y x = 6 ; y = 10 2 5 2x = 2 + 1y 5 5 5 16) 1 x + 1 = - 8 y x = - 3 ; y = 1/4 5 5 5 2x - 4y = -7 5 5 5 5. ECUACIONES DE SEGUNDO GRADO Calcular los valores de x que satisfagan las siguientes ecuaciones (Expresar los resultados en notación científica) Rtas.: a) - 2 + X = 7 ( X1 = 4 ; X2 = -5 ) 2 - ( -X - 3) b) 8X + 15 = X -5 -2 -7 ( X1 = 1 ; X 2 = -3) 3 3 X c) (2X + 6) ( -1 + 2X ) = 0 (X1 = 5.10 –1 ; X 2 = -3 ) d) 2 . 10 10 = X ( X1 = 1 ; X2 = -1) X 5 . 10 –11 e)- 2 = -1 + 1 - 2X ( X1 = 1 ; X2 = -1,5) 3 X 3 f) 4 X = 4 - 2 + 2 ( X1 = 1 ; X2 = -1,5) 3 3 X g) 3. 10 10 = X (X1 = 2,45 ; X2 = -2,45 ) X 2 . 10 –10 h) X - 2 - 7 = 0 ( X1= 4 ; X2 = -5) 4 2( X + 3) i) (3X - 5) (2X + 2) = 0 (X1= 1,67 ; X2 = -1)

j) - 2 - (- 4 + 3) = - 2 - X – 2 (X1= - 4 ; X2= 1) X 2 2 k) 3X = 3X2 (X1= 0 ; X 2 =1) 6. ECUACIÓN DE LA RECTA 1) Representar gráficamente (en papel cuadriculado o milimetrado) las siguientes ec

Add a comment

Related pages

FisicaNet - Guía de ejercicios. TP-07 [Matemática ...

Seguir a @Fisica_Net. Acerca de Fisicanet; Términos y condiciones; FAQ; Contacto; Fisicanet en las noticias; Sitios amigos; Otros enlaces . Google ...
Read more

UNAM 2015 Física, Matemática Guía para examen de ...

UNAM 2015 Física, Matemática Guía para examen de selección licenciatura Academia Internet. Subscribe Subscribed Unsubscribe 75,906 75K ...
Read more

Guía de Educación Física para la Educación Primaria

5 GUÍA DE EDUCACIÓN FÍSICA PARA LA EDUCACIÓN PRIMARIA INTRODUCCIÓN. La conducta humana es sin duda uno de los últimos aspectos por consolidarse,
Read more

Guía de Estudio para el Examen de Ingreso al Bachillerato ...

La Guía de Estudio de JOSÉ LUIS MORALES BALTAZAR para la Preparación del Examen de Ingreso a la educación Media Superior: PREPA, VOCA, CCH, CONALEP ...
Read more

Guias de Física - Página de Física de Francisco ...

Guia de Momentum Lineal, Impulso, Trabajo, Potencia y Energia, con ejercicios. Guia de cantidad de mov, impulso, trabaj. Documento Microsoft Word 32.0 KB.
Read more

Resolviendo la Guía del IPN 2016 (13-14) (Ingeniería y ...

Guia Ceneval. cómo contestar Razonamiento Matemático en Tiempo y Modo reales (Primera Parte). - Duration: 10:02. RECONO-SIENDO Edwin ...
Read more

Guías y parciales resueltos de Matemática del CBC | Exapuni

👉 Descargá gratis guías y parciales resueltos de Matemática del CBC - UBA
Read more

2 Ñinst: Guía de Física - Nivel de Matemáticas

Guia Matematicas 2010. Hace 6 años Estadiciendo.tk. Año nuevo en el instituto nacional. Hace 6 años Tercero K. Convivencia! Hace 6 años ...
Read more

Resolver problemas en Física - Física en Línea

Fisica es ciencia matemática. Definición de Física. Cifras significativas. Dígitos significativos. Introducción a cifras significativas 2. Analisis ...
Read more