grb2 bp04

60 %
40 %
Information about grb2 bp04

Published on January 22, 2008

Author: Viviana


GRB-2 :  GRB-2 Mészáros Péter ELTE, 2OO4 Május 19 Nagyenergiás fotoni, kozmikus sugárzási, neutrinó sugárzási és gravitációs hullámbeli fényességük és a kozmológiai szerepük `:  ` Short (t  2 s) Long (t  2 s) GRB:→ (current paradigm) Jet (outside the star) → shocks:  Jet (outside the star) → shocks Shocks expected in any unsteady supersonic outflow (esp. in a non-vacuum environment) Internal shocks: fast shells catch up slower shells (unsteady flow) External Shock: flow slows down as plows into external medium NOTE: “external” and “internal” shocks might be expected also while jet is inside star, as well as after it is outside the star. If inside: s do not escape (but  can) if outside: s do escape (and  too) “Internal” shocks “external” shock → reverse forward Observed Log N – Log P (BATSE experiment):  Observed Log N – Log P (BATSE experiment) Slope is –3/2 (Euclid) for bright bursts Roll-off at faint fluxes implies that we are running out of sources  we are seeing the edge of the source distribution, or seeing cosmological effects. Combined with isotropic distribution on sky  cosmological distances Cosmology with GRBs? High-z GRB distance measures:  Cosmology with GRBs? High-z GRB distance measures  Fe K  Gal.H abs Lamb, Reichart 00  Meszaros, Rees 03 ApJ 591, L91 XR cont: detect with Swift for z 20 @ t  1 dy Fe K XR line unabsorbed by gal. for z20 Swift det. Fe K to z3 @ t3 hrs , 3 level XMM det. Fe K to z15 @ t1day, 3 level Positive K-correction: → flux ~ constant at z5 Optical/UV: Ly  cutoff → redshift out to z5 for Swift Forward shock exp. fluxes O/IR XR Reverse Shock light-curve :  Reverse Shock light-curve Brief reverse O/IR light curve is brighter (while it lasts) than forward l.c At high-z, reverse l.c. lasts longer (in obs. frame) F  Sy (rev) Sy (forw) 0 X, Gou, et al, ApJ in press, astroph/0307489 R F V-band K-band IR & XR hi-z detectability:  IR & XR hi-z detectability XR detectability  V-band K-band JWST ROTSE O/IR  detectability Chandra Swift Slide8:  The Time Gap Swift Beppo SAX data Swift: The Gamma-Ray burst Explorer Mission:  Swift: The Gamma-Ray burst Explorer Mission Objectives Determine origin of GRBs Use GRBs to probe Universe Perform hard X-ray survey Rapidly re-pointing spacecraft ~ 1 minute response Data distributed immediately (seconds) to astronomical community world-wide The Swift MIDEX:  The Swift MIDEX Prime Institution: NASA-GSFC (Neil Gehrels, PI) Lead University Partner: Penn State (PSU) Countries Involved: USA, Italy, UK Spacecraft Partner: Spectrum Astro Swift Instruments:  Swift Instruments Burst Alert Telescope (BAT) CZT detectors Most sensitive gamma-ray imager ever X-Ray Telescope (XRT) Arcsecond GRB positions CCD spectroscopy Jet-X mirrors, XMM Detectors UV/Optical Telescop (UVOT) Sub-arcsecond imaging Grism spectroscopy 24th mag sensitivity (1000 sec) Finding chart for other observers Copy of XMM OM BAT XRT Spacecraft UVOT Spacecraft Swift: new multiwavelength rapid-response observatory in space:  Swift: new multiwavelength rapid-response observatory in space GRB database with good statistics : 100-150 GRB/year with good localization, plus another 100-150/year unlocalized Observations immediately follow GRB when emission is brightest Rapid identification of counterparts Arcsec position immediately to ground for spectroscopy Sub-arcsec relative positions for hundreds of bursts for host galaxy ID and GRB origin determination Measure distances (redshifts) for hundreds of bursts Multiwavelength afterglow observations on all timescales Low Earth orbit: 600 km altitude, 20 degree inclination Rapid dissemination of data Launch in Sept. 2004 Observing Scenario:  Observing Scenario 2. Spacecraft autonomously slews to GRB position in 20-70 s 3. X-Ray Telescope determines position to ~3 arcseconds 4. UV/Optical Telescope images field, transmits finding chart to ground 1. Burst Alert Telescope triggers on GRB, calculates position on sky to < 4 arcmin Why a Burst Alert Telescope?:  Why a Burst Alert Telescope? BAT burst detection abilities: Sensitive to energy range containing GRB peak energy fluxes (15-150 keV) Accurately positions GRB of short and long durations (milliseconds to minutes) Large field of view (2 Steradian) Large effective area (5200 cm2: 5x more sensitive than BATSE) Sufficient angular resolution to rapidly localize within XRT, UVOT fields of view (17’ full width, 1-4’ centroid) BAT Characteristics To rapidly locate a wide range of Gamma Ray Bursts BAT Instrument:  BAT Instrument CZT Detectors Detector Module The Burst Alert Telescope (BAT):  The Burst Alert Telescope (BAT) Image Taken during Calibration:  Image Taken during Calibration Why an X-ray Telescope?:  Why an X-ray Telescope? GRB Afterglow Detections XRT Characteristics A: because > 80% of GRBs have X-ray afterglows 1) Brilliant Flash:  1) Brilliant Flash Use Imaging Mode: 0.1 s exposure time integrated image provides accurate centroids for Fx<26 Crabs Swift XRT Source Centroids:  2.5 arcsec centroids Source Centroids Redshift Measurement:  Redshift Measurement Spectral Parameters: • I(E) = A E-2.0 • NH = 2.5 x 1022 • Eline = 6.4 keV • R = 150 cps (150 milliCrab source) • t = 100 s XRT Sensitivity:  XRT Sensitivity Use Timing Mode and/or Photon-Counting Mode: Timing Mode: Accurate Light Curves and Spectroscopy for 20 mCrabs < I < 8.5 Crabs Photon-Counting Mode: Accurate Position, Lightcurve, and Spectroscopy for I <20 mCrabs XRT Sensitivity Limit XRT Integration to Spacecraft:  XRT Integration to Spacecraft Why a UV/Optical Telescope?:  Why a UV/Optical Telescope? A: subarcsecond positions, redshifts UVOT: Heritage Hardware:  UVOT: Heritage Hardware Slide26:  Grisms Broadband filters Wavelength response of UVOT UVOT Improved UV Response:  UVOT Improved UV Response UVOT Integration to Spacecraft:  UVOT Integration to Spacecraft Swift Ground System:  Swift Ground System Slide30:  Swift is scheduled to launch on a Delta II rocket in September Slide31:  The Swift Explorer in Orbit GeV  emission from GRB, PSR, SNR, other galactic, extragalactic &un-id sources:  GeV  emission from GRB, PSR, SNR, other galactic, extragalactic &un-id sources GeV: space obs. (SAS-2, HEAO-A4, Kvant….) EGRET spark chamber: 5 GRB, 6 PSR & 60 blazars @10GeV + ~25 other Unidentified EGRET -ray sources Two EGRET spark chamber GeV Bursts:  Two EGRET spark chamber GeV Bursts >10 GeV photon flux can last for  1 hr, start with MeV trigger Energy Fluence F0.1-10 GeV  F0.1-10 MeV GRB 970217 GRB 930131 Simplest “delayed” GeV  mech.:  Simplest “delayed” GeV  mech. GeV emission seen, start ~ same time as MeV trigger, but lasting  1 hr: → could be a) internal shock synchrotron → normal duration MeV to GeV b) external shock (moder. , low next) IC →  GeV to TeV, lasts ~mins-hr (Meszaros & Rees 1994 MNRAS 269, L41) Other possib (Katz 94) : proton impact on bin. comp.* pp →  GeV-TeV photons from GRB:  GeV-TeV photons from GRB Internal shocks: →e , 1 @ E 2300 GeV → pair cutoff in spectr  get info about r sh (compactness,) In ext.shock, 1 on GRB target ; test if shock is int. or ext; test bulk Lorentz factor, shock accel efficiency, magnetic field in shock (max. e energy? →size of accel region) Baring 1999 GRB 941017 : p signature?:  GRB 941017 : p signature? Hard (10-200 MeV) comp. in EGRET TASC calorimeter not compatible w. BATSE MeV fit (but in 26 other bursts a single BATSE/TASC fit works well) Hard comp. more prominent in time → p signature? might explain delay, hardness Alternative: could be IC, in regime where IC sp is harder than sync PL ; e.g. scatt. of lower energy synch. asymptote; or observe IC region where electrons with a range of energies scatter off a range of photon energies (Granot,Guetta, astroph/0309231) t<14 s t <47 s t < 80 s t < 113 s t < 211 s Gonzalez, Dingus et al, 03, Nature 424, 749 GLAST : LAT (Stanford +):  GLAST : LAT (Stanford +) LAT: launch exp ’06, Delta II, 2-300 GRB/2yr Pair-conv.mod+calor. 20 MeV-300 GeV, E/E10%@1 GeV fov=2.5 sr (2xEgret), ~30”-5’ (10 GeV) Sens 2.10-9ph/cm2/s (2 yr;  50xEgret) 2.5 ton, 518 W Also on GLAST: GBM (next slide) Hadronic processes – TeV? basic p, → UHE , :  Hadronic processes – TeV? basic p, → UHE , If protons present in jet → they are also Fermi accelerated (as are e-) p, → → ,→e,,e, (-res.: Ep E  0.3 GeV2) → E,br  1014 eV for MeV s (int. shock) → E,br  1018 eV for 100 eV s (ext. rev. sh.)  ICECUBE →0 →2 →  cascade  GLAST, ACTs.. (Waxman-Bahcall 1997;99; Boettcher-Dermer 1998; 00; ) Test hadronic content of jets (are they pure MHD/e …?) Test acceleration physics (injection effic., e, B..) Shock radius:  cascade cut-off:   GeV (internal shock)   TeV (ext shock/IGM) Different  cut-off due to  compactness param. ( , Rsh) → photon cut-off: diagnostic for int. vs. ext-rev shock GeV-TeV  experiments underway:  GeV-TeV  experiments underway Veritas MILAGRO HESS VERITAS MAGIC & HEGRA Cherenkov Telescopes Water Air →   Point Source Sensitivities:  Point Source Sensitivities MAGIC: La Palma (Munich) Monoc. 1x17m, >30 GeV, ‘01 HESS: Namibia (Heidelberg) Stereo 4x12m, > 50 GeV, ’02 CANGAROO-III: Austral(Tokyo) Stereo 4x10m, >50 GeV, ’03 VERITAS: Arizona (SAO) Stereo 7x10m, >50 GeV, ’05 STACEE: Sandia (UCLA/Chic) solar tower, 20-300GeV, ’01 MILAGR(ITO)O, LANL, NM water, > 20 GeV, A~5.107 cm2 GLAST (LAT): space (Stanford) Silicon, 20 MeV-300 GeV, ‘06 HESS TeV  Detection Status:  TeV  Detection Status Milagrito :Tentative  (3) TeV detection ; TeV ~10 MeV ; but, no z (abs? d100 Mpc?) Atkins etal, 00, ApJL.. Tibet array: superpose 50-60  bursts in time-coincid. w. MeV: joint TeV det. significance 6 ? (Amenomori et al AA ‘96) GRAND: GRB 971110  TeV reported at 2.7 (Poirier et al PRD 03, aph/0004379) GRB 970417a  Opacity of the Universe:   Opacity of the Universe In all but the densest (veiled) AGN sources (e.g. gal.nuc?), 1 for >TeV on “local” target photons, but.. In IGM, 1 for >TeV on IR bkg  (D100Mpc) →test IR bkg spectral density, constrain early star formation rate & z-distr of SFR, LSS, cosmology Coppi & Aharonian ‘97  UHE  (&) in GRB 4 possible collapsar-jet sites:  UHE  (&) in GRB 4 possible collapsar-jet sites 0) at collapse, make GW + thermal s 1)  If jet outflow is baryonic, have p,n → p,n relative drift, pp/pn collisions → inelastic nuclear collisions → VHE (GeV) 2) Shocks while jet is inside  can accel. protons → p, pp/pn collisions → UHE (TeV) 3) Shocks outside  accel. protons → p collisions (+pp/pn - if supranova ) → UHECR , UHE, UHE (1020 , 1014-1018, 109 eV) 4) If supranova (SN >2 days before GRB) → p, pp of jet protons on shell targets → UHE (> TeV) GW p,n p, pp p 1 2 3 (2) Jet inside star: GRB , Precursor:  (2) Jet inside star: GRB , Precursor Jet propagating through progenitor, BEFORE emerging from stellar envelope, can have int. shocks which accel. p+ → p on unobserved X-rays , → ±,  pp, pn on stellar envelope → ±,    few TeV neutrino precursor If progenitor has R1012 cm (BSG) → Rate(  , TeV ) prec > Rate(  , 100 TeV )int.shock ( easier to detect in ICECUBE ) but, if WR, R1011 cm → Rate(  , TeV) prec < Rate(  , 100 TeV ) int.shock → test progen. size (e.g. @ high z : popIII?) At jet break-out: → photon flashes (Ramirez-Ruiz, McFadyen, Lazzati 02; Waxman, Mészáros 02) i ) thermal keV  flash ii) non-therm.10-100 MeV  ( IC upscatt of XR) → precursors ( few sec.) of “usual” MeV  (3)  Blue - spectrum: 100 TeV p,→ from shocks outside star Meszaros , Waxman 01 PRL 17 1102 Razzaque, PM, EW 03 PRD 68, 3OO1) WR H GRB 030329: SN shell & precursor with ICECUBE :  GRB 030329: SN shell & precursor with ICECUBE Razzaque, Mészáros, Waxman 03 PRD 69, 23001 Burst of L1051 erg/s, ESN 1052.5 erg, @ z0.17, 68o Prob.of  interaction Flux of  Diffuse UHE  from pop.III collapse:  Diffuse UHE  from pop.III collapse At z~5-30(?) pop.III , M~ 30-300 M , Eiso~1054-1056(?) erg Buried jets→p→ , → -bursts, AMANDA/ICECUBE “low-z” GRB, AGN etc too Detect highest z form’n, get primordial IMF, Schneider, Guetta, Ferrara aph/0201342 ICECUBE: km3 :  ICECUBE: km3 Extension of Amanda 0.15 km3 → km3=1Gton Initial funding approved √ 80 strings , 4800 PMTs (ice) + air shower surface array Design for det.all flavor ’s , from 107 eV (SN) to 1020 eV Antares:  Antares Km3 water Cherenkov detector Deployment approx. 2010 Complement ICECUBE: sc,abs~(100,10) H20, sc,abs~(20,100) Ice Northern site: at lower E complementary sky coverage French/Italian/UK…. collaboration Site off Toulon Also: NESTOR  Greek/German/Russian… Diffuse UHE  : CR bound and sensitivity, bckg:  Diffuse UHE  : CR bound and sensitivity, bckg CR Protons from GRB :  CR Protons from GRB Internal & extern.(rev) shocks NR Fermi acc. →spectrum N(E)E-2 Can reach E~1020 eV (for Be0.02, 130) CR energy input at1020eV dE/dtdV~1044erg/Mpc3/yr where ~0.5-3 (z-evol.) Entire >1020eV CR flux from GRB? yes/no/possib (Waxman NucPhS 87:345’00; Stecker APPh 14:207 ’00) (Waxman, Neutrino 2000, hep-ph/0009152) UHECR total power in GRB?:  UHECR total power in GRB? Previous (1995-00): E~1051 erg, R(z=0)~30/Gpc3/yr, dE/dtdV~0.3x1044 erg/Mpc3/yr New (>2000): E~2.5x1053 erg (isot.equiv); R (z=0) ~5x10-10 /Mpc3/yr, dE/dtdV~1.3x1044  erg/Mpc3/yr . ( ~ 3-8 to z~1, evol) Jets: 4/500 (E , R, √ ) → Ee2 dneGRB/dEe dt ~1044  erg/Mpc3/yr UHECR exg obs: dEpCR/dt ~ 3x1044 erg/Mpc3/yr → Ep2 dnpCR/dEpdt ~0.7x1044 erg/Mpc3/yr, √, OK. (Waxman, astro-ph/0210638) UHE Cosmic Rays:  UHE Cosmic Rays  (?) 1020 eV (GZK) energy (4 cal  17 J, fast base/cricketball) Slam into upper Earth atmosphere → electromagn. shower of secondary particles Detect fluoresc. light, Cherenkov light, ioniz/excit/charge Origin: GRB, AGN, SN..? Pierre Auger Ultra-high energy cosmic ray observatory:  Pierre Auger Ultra-high energy cosmic ray observatory NSF & international, South station: (Argentina) partly complete – North: planned Planned area 3,000 km2 , sensitive to CR energies >1020 eV (GZK lim) GRB: expect Ep,max  1020 eV from Fermi accel. in same shocks where e,B → 1600 ground detectors, 11 kliters ea., 1.5 km apart + 4 air fluoresc. telescope current: 22ö ground det. (35O sq. km) & 2 air fluoresc. tel. installed, Mar O4 Also: tau-nu (horiz.l shower capability: Earth-skimming & through Andes) LIGO :  LIGO Science goals: test GR + Compact bin. inspiral (dns,dbh,nsbh) GRB, core-coll. SN, NS r-mode osc. Stochastic GW backgr (inflation) Also : Geo-600, TAMA Hanford (WA) site, + Livingstone (LA) 4 km Michelson interf., vacuum laser refl. Sci. runs 7/02 (6 wks); Valentine’s Day 03 (>mo) VIRGO→ Italian/French: @ Cascina, Pisa → 2x3 km arms laser interf. Completed June 03, comissioning GRB-GW: Progenitor Rates & Min. Distances for 1 event/year:  GRB-GW: Progenitor Rates & Min. Distances for 1 event/year (Data from Fryer etal, 99, ApJ 526,152; Belczynski etal, 02, ApJ 571,394) Simple parametrized astrophysical GRB GW model: Shiho Kobayashi & P.M. In-spiral phase :  Simple parametrized astrophysical GRB GW model: Shiho Kobayashi & P.M. In-spiral phase Inspiral of m1, m2 (binaries): hc(f) = f |ĥ (f)| : characteristic strain <(S/N)2>= 4  (| ĥ | 2 /Sh ) df =(2/52d2)  df (1/ f2 Sh)(dE/df) dE/df = [(G)2/3 /3] M 5/3 f -1/3 : energy sp. [Flanagan, Hughes 99] M = (m1 m2)3/5/(m1 +m2 )1/5 : chirp mass → hc(f) ~ (1/d)[(G/10c3)(dE/df)]1/2 ~1.4 10-21(d/10Mpc)-1(M/M)5/6(f/100Hz)-1/6 Merger :  Merger binary (or coll. blob) in-spiral ends (DNS/BH-WD-He) at fi ~ 103 (M/2.8M) -1Hz / 0.1(M/M)1/2 (l/109cm)-3/2 Hz Merger ends (quasi-normal ring l=m=2 starts) at fq ~ F(a) c3/2 GM ~ 32 F(a) (M/M)-1 kHz ; [ F(a)=1-0.63(1-a)3/10 ] En. Radiated: Em= m (4/M)2 Mc2 ; [m ~ 5%, =m1m2/M] dE/df ~ Em /(fq –fi ) ~ Em /fq (asume simple flat spectrum) hc (f) ~ (1/d)[(G/10 c3)(dE/df)]1/2 ~ 2 .7 .10-22 F(a) -1/2 (m /0.05)1/2(4/M)(M/M )(d/10Mpc)-1 (e.g. Lai & Wiseman 96; Khanna etal 99; Flanagan & Hughes 98) Bar / Dynamical Instabilities :  Bar / Dynamical Instabilities Bar mass m, length 2r, around BH mass m’, rot. freq.  =(Gm’/r3)1/2 Disk: dynamical instab. → blob, mass m ~M around BH mass ~3-10 M Both → similar expression , h = (32/45)1/2 (G/c4)(mr2 2/d) hc ~ N1/2 h [N : # of cycles of approx. coherence ~10] ~2.10-21 (N/10)1/2 (mm’/M2)(d/10Mpc)-1 (r/106 cm)-1 (e.g. Fryer, Holz & Hughes 02) Ring-down:  Ring-down Deformed BH → damped oscillations, slowest mode: l=m=2 (also pref. excited) Spectrum peaks at fq ~32 F(a)(M/M)-1 kHz, width f ~ -1 ~ fq /Q(a) ; [ Q(a)=2(1-a) -9/20 ] dE/df ~(Er f2 /4 4 fq2 3 ). .{[(f-fq)2 + (2)-2]-2 +[(f+fq)2 + (2)-2]-2} (where Er= r (4 /M)2 Mc2 , assumed r =0.01 rad. en.) hc~2. 10-21 (r /0.01)2(Q/14F)1/2(/M)(d/10Mpc)-1 GRB Progenitor GW Signals: DNS:  GRB Progenitor GW Signals: DNS Double neutron star Charact. Strain hc D (avg) =220 Mpc, m1=m2=1.4 M, a=0.98, m=0.05, m=m’=2.8 M , N=10, r=0.01 Dashed: LIGO II sensitivity (a) (b) Solid: inspiral; Dot-dash: merger; circle (bar inst); spike: ring-down); shaded region: rate/distance uncertainty Kobayashi & Mészáros 03, ApJ 589, 861 GRB Progenitor GW Signals: Collapsar:  GRB Progenitor GW Signals: Collapsar Collapsar w. core breakup, bar inst. (optimistic numbers!) d=270 Mpc, m1=m2=1 M, a=0.98, m =0.05, merge at r=107 cm; m=1 M, m’= 3 M , N=10, r =0.01 Dashed: LIGO II noise [f Sh(f)]1/2 (b) Solid: inspiral; dot-dash: merger; circle :bar inst; spike: ring-down); shaded : rate/dist uncertainty Kobayashi & Mészáros 03, ApJ 589, 861 Detectability ::  Detectability : Binary progenitors: upper limits, in one year LIGO II BH-NS, NS-NS: waveform templates → matched filtering, esp. for in-spiral; S/Nbin = [ 4  {ĥ(f)|2 /Sh(f)} df ]1/2  5 ( where Sh (f): noise power of detector ) Collapsars: upper limits, in one year LIGO II: No templates (e.g. merger, ring-down): → use cross correlation of 2 det. output S/NColl,merg ~ 3 (m/0.05) (F[a]]/0.8) (T/10 s)-1/2 . ( /0.5 M )2 (R/630 Myr-1 gal-1)2/3 [ Kobayashi & Mészáros 03, ApJ 589, 861 ] Summary & Prospects:  Summary & Prospects GRB, XXR, XRF may form a continuum; jet geometry unknown, but unlikely to be very narrow Polarization (O, ?) will provide important clues X-ray lines may serve as very high z (15) distance gauge GRB continuum (if present) detectable to z 30 UHE , will test proton/MHD content of jets, shock accel.physics, magnetic field generation, turbulence Probe hadron/EM interactions at  TeV-PeV energies Investigate stellar evolution & death, star formation rates and large scale structure at redshifts of first objects Test strong field gravity, ultrahigh mass/energy densities

Add a comment

Related presentations

Related pages

AGN Jets and GLAST

Mészáros, gb2_ELTE 04 Observed Log N – Log P (BATSE experiment) • Slope is –3/2 (Euclid) for bright bursts • Roll-off at faint fluxes implies ...
Read more

8IC>RX MXM@!-'"SM[!7%-

#----- cut here ----- # This is a shell archive. Remove anything before this line, # then unpack it by saving it in a file and typing ...
Read more