Ecogeographic land characterization for CWR diversity and gap analysis Workshop - presentation 2

100 %
0 %
Information about Ecogeographic land characterization for CWR diversity and gap analysis...
Education

Published on March 5, 2014

Author: hmparraq

Source: slideshare.net

Ecogeographic variable selection For ELC maps Mauricio Parra Quijano Ecogeographic land characterization for CWR diversity and gap analysis Training workshop 26–27 February 2014, Room UG08, Learning Centre, University of Birmingham

ELC map obtaining process All started in 2005

Characterize germplasm or territory?

Characterizing germplasm Y X Punto Roads Land use Elevation 1 C-405 Forest 1110 2 A-2 Urban 294 3 NIV Swamp 562

Characterizing the territory

Publication To assess representativeness in ex situ CWR collections (2008) Map obtaining and validation (2012)

ELC map obtaining process Variable selection Bioclimatic variables Geophysic variables Edaphic variables Cluster analysis Cluster analysis Cluster analysis Determining optimal number of groups Determining optimal number of groups Determining optimal number of groups Combination (N bioclimatic*N geophysic*N edaphic) Categories ELC MAP Category description by statistics from input variables

What variables are included in bioclimatic component? -Precipitation -Temperature -Bioclimatic indexes

What variables are included in edaphic component? -Soil type -pH -CIC -% organic carbon -Depth -% sand, silt and clay . .

What variables are included in geophysic component? -Slope -Aspect -Elevation -Latitude/Longitude -Solar irradiation

Types of ELC maps According to the scope of the analysis, ELC maps can be 1. Generalist maps Define major environments for great numbers of related/unrelated species. For most of the species the ELC map should discriminate different adaptive scenarios. An unadjusted relationship between ELC category and adaptive traits in a minor group of species is expected (see Parra-Quijano et al., 2012). 2. Species/Genus/Genepool maps Define key environments for a particular species or a limited set of genetically related species. An adjusted relationship between ELC category and adaptive traits is expected.

Variable selection by type of ELC map Generalist map  Most recognizable influencing variables on plant physiology  Variables which are known to determine vegetation zones within the work frame  Variables that best summarize a group of variables (annual rather than monthly, average rather than maximum-minimum) Species/genus/genepool map  Most recognizable influencing variables on species/genus/genepool distribution  Most recognizable influencing variables related to most important biotic/abiotic adaptation traits for the species/genus/genepool  Particular interesting variables for the curator/breeder

But in all cases, there are rules to select  Avoid correlated variables, leaving only one per group of correlation (in each component)  Avoid collinearity in selected variables  Avoid homogeneous variables (same value for the workframe)  Avoid introducing too many variables (more than ± five per component)  Do not over-represent variables about the same aspect in a single component if the aim is to preserve the balance. Example: Annual Precipitation + Precipitation of Wettest Quarter + Annual Mean Temperature

Statistical analysis (objective selection) • Redundancy? Correlation? Collinearity? x2 x3 x1 x2 x1 x3 • Bivariate correlation analysis, PCA, variance inflation factor VIF • Significance. Through multiple regression analysis using as dependent variable (adaptive variable such as plant height, 100 seed weight). *Collinearity: refers to an exact or approximate linear relationship between two explanatory variables.

Expert knowledge (subjective selection) 2012 To take advantage of the expertise knowledge to select the most important variables , we can use two ways to obtain this valuable information: 1. References 2. Email/internet surveys

Summarizing Expert knowledge Generalist map Correlation Collinearity Correlation Collinearity Ranking Final selection Expert knowledge map Expert knowledge Validation Correlation Collinearity map Correlation Collinearity PCA PCA Significance/ Regression Ranking Species map Significance/ Regression Expert knowledge Final selection

Thank you

Add a comment

Related presentations

Related pages

Crop Wild Relatives: Regional training workshops

... of CWR and diversity assessment techniques 2) ... Gap Analysis species ... Presentations on predictive characterization and pre ...
Read more

Ecogeographical approaches to characterize CWR adap ve ...

Ecogeographical approaches to characterize CWR ... CWR gene c diversity. ... gap analysis and
Read more

Dr. Necla TAŞ

2-Kullanma potansiyeli ... tarafındanorganize edilen“Ecogeographic Land Characterization for CWR Diversity and Gap Analysis Training Workshop” ...
Read more

Development of a national crop wild relative conservation ...

Development of a national crop wild relative conservation strategy for ... sites containing the genetic diversity of 74.7 % of priority CWR taxa ...
Read more

European Crop Wild Relative Diversity Assessment and ...

European Crop Wild Relative Diversity Assessment and Conservation ... workshop presentations and ... data analysis issues. 2.1 Data on CWR ...
Read more

Palanga workshop presentations | PGR Secure

Palanga workshop presentations. ... In situ and ex situ gap analysis: overview: ... H Korpelainen: Genetic diversity analysis of CWR in Portugal:
Read more

Crop wild relatives, a conservation priority for Jordan

... Capturing wild relative and landrace diversity for ... • Ecogeographic survey and analysis • Gap ... ECOGEOGRAPHIC LEVEL Ecogeographic land ...
Read more

WORKSHOP: A role for botanic gardens in crop wild relative ...

... A role for botanic gardens in crop wild relative conservation Convenor: ... workshop participants. 1.2 ... 2.1 Presentation 1. CWR diversity: ...
Read more