dxwang ACO2007

50 %
50 %
Information about dxwang ACO2007

Published on November 29, 2007

Author: Herminia

Source: authorstream.com

Correlations of Astrophysical Phenomena in Black Hole Systems of Different Scales :  Correlations of Astrophysical Phenomena in Black Hole Systems of Different Scales Astrophysics of compact objects July 1 - 7, 2007, Huangshan, China Ding-Xiong Wang Huazhong University of Science & Technology Slide2:  It has been found that (1) 3:2 QPO pairs (2) Jets (3) Broad Fe Kα lines XTE J1550-564 (276 and 184 Hz); GRO J1655-40 (450 and 300 Hz); GRS 1915+105 (168 and 113 Hz) (McClintock & Remillard 2006; Miller et al. 2004; Homan et al. 2005, Remillard et al. 2006, Miller 2007) 1. Observations Slide3:  Fig. 1 Four pairs of HFQPOs observed in these black–hole binary systems. The energy band is 6–30 keV. from McClintock & Remillard (2006) Slide4:  Table 1. Confirmed black hole binaries: X–ray and optical data from McClintock & Remillard (2006) Slide5:  Similar phenomena observed in supermassive BH systems: (1) SgrA*: 3:2 QPO pair (1.445 and 0.866 mHz) in near infrared flares (Aschenbach 2004a, 2004b; Török 2005) (2) MCG – 6-30-15: 2:1 QPO pair (5 and 2.5 mHz) (Lachowicz et al. 2006), and a steep emissivity requied by broad Fe Kα lines observed (Wilms 2001). Slide6:  Fig. 2 Black Hole Accretion Disk –A standard model for high energy radiation and jet from AGNs and microquasars From Mirabel (1998) Slide7:  The jets can be observed in hard states, but can not in soft states, and a jet line in hardness-intensity diagram (HID) divides the hard state from the soft state. (Fender et al. 2004) Slide8:  Fig. 3 A schematic of a simplified model for the jet-disk coupling in black hole binaries (From Fender et al. 2004). Slide9:  Koerding et al. (2006) construct ‘disc fraction/luminosity diagrams’ (DFLDs) as a generalization of HIDs, which plot the intensity against the fraction of the disk contribution in the overall SED based on the concerned samples of AGNs. Slide10:  Fig. 4. Sketch of the distribution AGN and XRB states (scaled to AGN masses) on the disk fraction - luminosity diagrams (DFLDs) (from Koerding et al. 2006) LD -- disk luminosity; LPL -- the luminosity of the power-law component. Slide11:  Questions: 1. Is there any correlation of HFQPOs with jets in BHXBs? 2. How to interpret the jet line in HID? 3. How to interpret the similar phenomena in the BH systems of different scale? Slide12:  Fig. 5 A large scale magnetic field is essential for jet powered by the BZ process (Blandford & Znajek 1977). Magnetic coupling (MC) is a variant of the BZ process (Blandford 1999, Li 2000) Slide13:  Fig. 6 Magnetic field Configuration for the coexistence of the BZ and MC processes. is the angular boundary of the open and closed field lines 2. A brief review of the BZMC Model Slide14:  This model is proposed based on some simplified assumptions, such as the conservation of magnetic flux and the magnetic field varying with the disk radius as a power-law (Wang et al. 2002, 2003, 2004) Slide15:  The coexistence of the BZ and MC processes always accompanies the screw instability (Wang et al. 2004). Fig. 7 — Critical line for the MC with BZ jet and without BZ jet in parameter space. Slide16:  Screw instability (kink instability) of the magnetic field is invoked to determine the angular boundary of the open and closed magnetic field lines at the horizon (Kruskal-Shafranov criterion ): The screw instability will occur, if the toroidal magnetic field becomes so strong that the magnetic field line turns around itself about once. Two rotating hotspots can be produced in the inner disk by the non-axisymmetric field. Slide17:  Inner hotspot corresponds to the upper frequency of the HFQPO pair, arising from the peak value of transferred energy flux. Outer hotspot corresponds to the lower frequency of the HFQPO pair, arising from the screw instability. Slide18:  Fig. 8 Inner and outer rotating hotspots produced by non-axisymmetric magnetic field Slide19:  Energy and angular momentum are transferred from the BH to the disk by virtue of a large scale non-axisymmetric magnetic field (Wang et. 2003, 2005). Slide20:  Expressions for the power and torque in the BZ and MC processes can be derived based on an equivalent circuit for the BH magnetosphere. Slide21:  3.1 The upper and lower frequencies of 3:2 QPO pairs are expressed by 3. Fitting results (Wang et al. 2005, 2007) The positions of the inner and outer hotspots are expressed by Slide22:  Fig. 9.1 The state with 3:2 QPO pairs can be represented by a point in parameter space. Slide23:  Fig. 9.2 Slide24:  Fig. 9.3 Slide25:  Fig. 9.4 Slide26:  Table 2 The fitting results for 3:2 ratio in HFQPOs Slide27:  3.2 Comparison of the estimated BH spins J1655-40: Authors Methods Spin Z97 X-ray continuum fitting 0.7-0.95 G01 X-ray continuum fitting 0.68-0.88 S06 X-ray continuum fitting 0.65-0.75 M06 X-ray continuum fitting 0.65-0.80 AK01 Resonance 0.2-0.67 W07 3:2 QPO pair 0.667-0.709 Z97 -- Zhang et al. 1997, ApJ, 482, L155, G01 --Cierlinski, 2001, MNRAS, 325, 1253 S06 -- Shafee et al. 2006, ApJ, 636, L113, M06-- McClintock et al. astro-ph/0606076, AK01--Abramowicz & Kluzniak, 2001, A&A, 374, L19 W07 -- Wang et al. 2007, ApJ, 657, 428, Slide28:  ERM: epicyclic resonance model 3 Table 3 The BH spins measured by X-ray continuum and 3:2 QPO pairs Slide29:  4. Summary The following correlations are discussed: (1) 3:2 QPO pairs are associated with jets in some BHXBs, and this association also occurs in SgrA*, the massive BH in the Galactic Center; (2) The jet line in HID could be interpreted based on the condition for the coexistence of the BZ and MC mechanisms. (3) The association of the steep emissivities requied by broad Fe Kα lines with QPO will be discussed by invoking a magnetic torque exerted at the inner edge of the disk (in preparation) Slide31:  References Abramowicz, M. A., & Kluzniak, W., 2001, A&A, 374, L19 (AK01) Abramowicz, M. A., & Kluzniak, W., 2004, in AIP Conf. Proceedings, 714, X-ray Timing 2003: Rossi and Beyond, ed. P Kaaret, F K. Lamb, J H. Swank. (NY: AIP), 21 (AK04) Agol, E, Krolik, J H, 2000, ApJ, 528, 161 Aschenbach, B., et al. 2004a, A&A, 417, 71 (A04a) —. 2004b, A&A, 425, 1075 (A04b) —. 2006, updated version of a talk given at the 2005 Frascati Workshop, Vulcano, Italy, May 23 – 28, astro-ph/0603193 (A06) Belloni, T., Mendez, M., King, A. R., van der Klis, M., & van Paradijs, J. 1997a, ApJ, 479, L145 —.1997b, ApJ, 488, L109 Belloni, T., Klein-Wolt, M., Mendez, M., van der Klis, M., & van Paradijs, J. 2000, A&A, 355, 271 Belloni, T., 2005, Proceedings of COSPAR Colloquium "Spectra & Timing of Compact X-ray Binaries," January 17-20, 2005, Mumbai, India, astro-ph/0507556 (B05) Blandford, R. D., & Znajek, R. L. 1977, MNRAS, 179, 433 Blandford, R. D., 1999, in ASP Conf. Ser. 160, Astrophysical Discs: An EC Summer School, ed. J. A. Sellwood & J. Goodman (San Francisco: ASP), 265 Slide32:  Blandford, R. D., 2002, Lighthouses of the Universe: The Most Luminous Celestial Objects and Their Use for Cosmology Proceedings of the MPA/ESO/, p. 381. Bradt, H. V., Rothschild, R. E., & Swank, J. H., 1993, A&AS, 97, 355 Brown, G. E., et al. 2000, New Astronomy 5, 191 Bower, G. C., Falcke, H., Herrnstein, R. M., et al. 2004, Science, 304, 704 Bursa, M., 2005, in Proceedings of RAGtime 6/7: Workshops on black holes and neutron stars, ed. S. Hledík & Z. Stuchlík (Silesian University in Opava, Czech), 39 (Br05) Davis, S. W., Done, C., & Blaes, O. M., 2006, ApJ, 647, 525 (D06) Fender, R.P., Belloni, T., & Gallo, E., 2004, MNRAS, 355, 1105 (FBG04) Gierlinski, et al. 2001, MNRAS, 325, 1253 (G01) Homan, J., et al. 2005, ApJ, 623, 383 Kalemci, E. et al. 2006, ApJ, 640, 55 Kato, S., & Fukue, J., astro-ph/0608578 (KF06) Kording, E G, Jester, S, and Fender, R, MNRAS, 2006, 372, 1366 Li, L. -X., 2000a, ApJ, 533, L115 —. 2000b, ApJ, 531, L111 —. 2002, ApJ, 567, 463 Slide33:  Livio, M., Pringle, J. E., & King, A. R., 2003, ApJ, 593, 184 (LPK03) Ma, R.-Y., Wang, D.-X., & Zuo, X.-Q., 2006, A&A, 453, 1 McClintock, J E, & Remillard R A 2006. In Compact Stellar X-ray Sources, ed. WHG Lewin, M van der Klis, pp. 157–214. Cambridge: Cambridge University Press. (astro-ph/0306213) (MR06) McClintock, J E et al. astro-ph/0606076 (M06) Middleton, M., et al. astro-ph/0601540 (MD06) Mirabel, I. F., & Rodriguez L. F., 1998, Nat, 392, 673 —. 1999, ARA&A, 37, 409 Miller, J. M. et al. 2001, ApJ, 563, 928 Miller, J. M. et al. et al. 2004, astro-ph/0402101 Miller, J. M. et al. 2007, ARA&A, arXiv:0705.0540 Page, D. N., & Thorne, K. S. 1974, ApJ, 191, 499 Remillard, R. A., et al., 1999, ApJ, 522, 397 Remillard, R. A., et al., 2002, ApJ, 564, 962 Remillard, R. A., & Muno, M. P., ApJ, 2002, 580, 1030 (RM02) Remillard, R. A., et al. 2006, ApJ, 637, 1002 Remillard, R. A., & McClintock J. E., 2006, ARA&A, 44, 49 (RM06) Shafee, R., et al. ApJ, 2006, 636, L113 (S06) Strohmayer, T. E., 2001a, ApJ, 552, L49 —. 2001b, ApJ, 554, L169 Slide34:  Thorne, K. S. 1974, ApJ, 191, 507 Torok, G., 2005, Astron. Nachr., 326, 9, 856 Wagoner, R. V., Silbergleit, A. S., & Ortega-Rodriguez, M. 2001, ApJ, 559, L25 Wang, D.-X., Xiao K., & Lei W.-H. 2002, MNRAS, 335, 655 (W02) Wang, D.-X., et al., 2003a, ApJ, 595, 109 (W03) —. 2003b, MNRAS, 344, 473 —. 2004, ApJ, 601, 1031 (W04) —. 2005, MNRAS, 359, 36 (W05) —. 2007, ApJ, 657, 428 Zhang, S. N., Cui, W., & Chen, W., 1997, ApJ, 482, L155 (Z97)

Add a comment

Related presentations