Cours modelisation calage2010

56 %
44 %
Information about Cours modelisation calage2010
Environment

Published on April 14, 2014

Author: SouhilaBenkaci

Source: slideshare.net

MODELISATION DES RESEAUX D’ASSAINISSEMENT CONCEPTS APPROCHES ET ETAPES COURS de 3ème ANNEE de l’ENGEES Par Mathieu ZUG et José VAZQUEZ Extrait de « Modélisation du bassin versant de Boudonville », Nancy ANJOU RECHERCHE ANJOU RECHERCHE

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 2 SOMMAIRE 1. INTRODUCTION GENERALE.......................................................................................................................4 2. LA MODELISATION ........................................................................................................................................6 2.1 MODELISATION : CONCEPTS, APPROCHES, ET ETAPES .......................................................................................6 2.1.1 Les modèles.............................................................................................................................................6 2.1.2 Les différents types de modèles...............................................................................................................6 2.1.3 Les problèmes à résoudre.......................................................................................................................7 2.2 ETAPES METHODOLOGIQUES .............................................................................................................................8 3. PRISE EN COMPTE DES DONNEES ..........................................................................................................10 3.1 ORIGINE ET TYPES DE DONNEES DU SITE..........................................................................................................11 3.2 LES DONNEES « MESUREES » EVENEMENTIELLES............................................................................................12 3.2.1 Les grandeurs mesurables....................................................................................................................12 3.2.2 Spécificité des mesures par temps de pluie ..........................................................................................13 3.2.3 Mesure des pluies..................................................................................................................................13 3.2.4 Mesure du débit.....................................................................................................................................14 3.2.5 Mesure de la pollution..........................................................................................................................15 3.2.6 Synthèse des erreurs de mesures..........................................................................................................17 4. LES PRINCIPAUX PHENOMENES.............................................................................................................19 4.1 MODELISATION QUANTITATIVE.......................................................................................................................19 4.1.1 Transformation pluie brute-pluie nette ................................................................................................19 4.1.2 Transformation pluie nette-ruissellement.............................................................................................20 4.1.3 Hydraulique ..........................................................................................................................................21 4.2 MODELISATION QUALITATIVE .........................................................................................................................23 4.2.1 Les fonctions de production en surface de bassin versant...................................................................24 4.2.2 Les fonctions de transfert en réseau.....................................................................................................25 4.2.3 A titre d’Information.............................................................................................................................29 5. SCHEMATISATION, CALAGE, VALIDATION ET EXPLOITATION ................................................30 5.1 SCHEMATISATION PREALABLE.........................................................................................................................30 5.2 CRITERES DE COMPARAISON............................................................................................................................31 5.3 LE CALAGE.......................................................................................................................................................33 5.4 LA VALIDATION ...............................................................................................................................................37 5.5 EN RESUME ......................................................................................................................................................42 5.6 EXPLOITATION DES MODELES CALES ET VALIDES............................................................................................43 5.6.1 Pluies du groupe 1................................................................................................................................44 5.6.2 Pluies du groupe 2................................................................................................................................45 5.6.3 Pluies du groupe 3................................................................................................................................46 6. BIBLIOGRAPHIE ............................................................................................................................................47 7. ANNEXE 1: EXTRAITS D’UN TEXTE REDIGE PAR HENRI BOUILLON, DANS LE CADRE DU CERTU A PROPOS DES COURBES IDF (SE REFERER AU LE GUIDE « LA VILLE ET SON ASSAINISSEMENT » DU CERTU DE JUIN 2003................................................................................................51 8. ANNEXE 2: LA REPARTITION DE LA POLLUTION DANS LES EAUX DE PLUIE.......................55 9. ANNEXE 3 « MODELISATION ASSAINISSEMENT DU BASSIN DE BOUDONVILLE PAR LE LOGICIEL HYDROWORKS DMTM »....................................................................................................................57 9.1 INTRODUCTION ................................................................................................................................................57 9.2 PRESENTATION DU SITE ET DU BASSIN DE GENTILLY ......................................................................................57

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 3 9.3 MISE AU POINT DU MODELE MATHEMATIQUE (CONFIGURATION ACTUELLE DU BASSIN DE GENTILLY)..................................................................................................................................................................59 9.3.1 Calage du modèle en hydraulique........................................................................................................59 9.3.2 Validation du modèle en hydraulique ..................................................................................................60 9.3.3 Mise au point et verification du modèle pollution................................................................................63 9.3.4 Mise au point du modèle en pollution à la sortie du bassin ................................................................63 9.3.5 Discussion des résultats en pollution ...................................................................................................64 9.4 SYNTHESE....................................................................................................................................................65 10. ANNEXE 4 « « ETUDE DE DEFINITION DU DEBIT DE REFERENCE D’UNE STATION D’EPURATION : APPLICATION AU SYSTEME D’ASSAINISSEMENT DE GRAND COURONNE »...66 10.1 CONTEXTE ..................................................................................................................................................66 10.2 OBJECTIFS...................................................................................................................................................66 10.3 DEMARCHE ADOPTEE .............................................................................................................................67 10.4 SITE D’APPLICATION...................................................................................................................................67 10.5 ANALYSE PLUVIOMETRIQUE.......................................................................................................................67 10.6 MESURES ....................................................................................................................................................69 10.7 MODELE « RESEAU » ..................................................................................................................................69 10.7.1 Construction du modèle........................................................................................................................70 10.7.2 Calage et validation du modèle............................................................................................................70 10.8 MODELE « BASSIN TAMPON ET PRE-TRAITEMENTS »..................................................................................72 10.9 MODELE « STATION ».................................................................................................................................73 10.9.1 Construction du modèle........................................................................................................................73 10.9.2 Calage et validation du modèle............................................................................................................73 10.10 MODELE INTEGRE « RESEAU + BASSIN TAMPON + PRE-TRAITEMENTS + STATION » ..................................74

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 4 1. INTRODUCTION GENERALE En raison de l’accroissement constant de l’urbanisation et de l’extension des surfaces imperméabilisées, le ruissellement urbain a pris de plus en plus d’importance depuis une trentaine d’années. Afin de protéger les riverains contre les inondations, les eaux pluviales ont longtemps été considérées sous un angle purement hydraulique avec la volonté d’évacuer le volume ruisselé le plus rapidement possible. Néanmoins, l’urbanisation croissante ne se manifeste pas seulement en matière de débit, mais aussi en matière de pollution. Ce n’est cependant qu’à partir des années 70 que l’on s’est véritablement tourné vers une approche qualitative des eaux pluviales et donc de leurs impacts sur le milieu naturel. En effet, la pluie se charge en poussière dans l’air, lessive les toitures, les trottoirs et les chaussées, rejoint le réseau d’assainissement, est éventuellement mélangée à des eaux usées urbaines, peut éroder des dépôts se trouvant dans les collecteurs, avant de rejoindre le milieu naturel. Il faut en outre rappeler que selon la nature du réseau, séparatif pluvial ou unitaire, l’eau polluée rejoint directement le milieu naturel pour l’un et rejoint le milieu naturel après traitement par une station d’épuration ou directement au droit des déversoirs d’orage pour l’autre. Par conséquent, les eaux polluées rejoignent souvent les milieux naturels sans traitement et leur impact est d’autant plus important, aussi bien à court terme qu’à long terme. Le système général englobant le réseau de collecte, le système de traitement et le milieu naturel peut donc être représenté sous la forme du schéma en Figure 1. Figure 1 :Schéma général du système.

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 5 De nombreux travaux de recherche s’accordent à reconnaître l’importance de cette pollution et estiment que les flux polluants à l’échelle de l’événement pluvieux sont très largement supérieurs aux flux journaliers rejetés par les stations d’épurations et ceci, pour de nombreux paramètres polluants. Dès lors, la maîtrise de ces rejets urbains par temps de pluie est devenue une nécessité pour de nombreuses villes et régions, nécessité amplement exprimée par la loi sur l’eau de 1992 et les décrets de 1993. La première rend obligatoire le traitement approprié des eaux urbaines de temps de pluie pour respecter les normes de rejets édictées et les seconds, relatifs aux procédures d’autorisations et/ou de déclarations de rejets au droit des déversoirs d’orage. Cette maîtrise nécessitera dans les années à venir une remise en cause des pratiques actuelles et la mise en œuvre d’un certain nombre de solutions pour chaque situation. L’appréhension de cette pollution commence par une meilleure connaissance des phénomènes mis en jeu à l’amont et au sein du réseau d’assainissement. A l’heure actuelle, elle passe par deux méthodes principales, à savoir la mesure in situ et la modélisation numérique. D’une manière générale, la modélisation de la pollution apparaît comme l’un des moyens pour comprendre, caractériser et finalement anticiper cette pollution . Ainsi les outils de modélisation de l’hydraulique et de la pollution en réseau d’assainissement permettront d’initier des actions très intéressantes, comme l’évaluation des débits et flux polluants arrivant à la station d’épuration et dans le milieu récepteur et donc d’offrir la possibilité d’étudier les moyens de minimiser les nuisances de cet apport de pollution. De plus, ils contribueront également à tester les répercussions soit d’une gestion différente des ouvrages du réseau (et à plus long terme une gestion en temps réel), soit de certains aménagements susceptibles de modifier les caractéristiques ou le mode de rejet des eaux polluées. Mais si la modélisation numérique de l’hydraulique permet l’obtention de résultats de bonne qualité (hormis pour certains ouvrages spécifiques tels que les déversoirs d’orage), la modélisation de la pollution reste délicate et ceci, autant au niveau de la complexité des phénomènes mis en jeu et de l’état des connaissances que de la disponibilité ou l’existence de données expérimentales spécifiques et fiables. Car il faut noter que modélisation et mesures in situ doivent être menées de façon conjointe.

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 6 2. LA MODELISATION 2.1 Modélisation : concepts, approches, et étapes Pour décrire la réalité complexe de l’hydraulique et de la pollution en réseau d’assainissement, un important effort de développement des modèles mathématiques a été réalisé depuis trente ans. Cet effort a été grandement favorisé par le développement des moyens informatiques. Ainsi, il est important de faire quelques rappels sur les modèles, les différentes approches modélisatrices et les différentes étapes à suivre. 2.1.1 Les modèles Les modèles mathématiques, d’une façon très générale, sont constitués: - d’un ensemble de variables, choisies pour représenter l’objet étudié, - d’un ensemble de relations mathématiques entre ces variables, choisies pour représenter son fonctionnement. Ces relations, qui doivent permettre de calculer les variables de sortie en fonction des variables d’entrée, font aussi intervenir d’autres paramètres. Cette imitation recouvre deux fonctions essentielles, complémentaires et indispensables : - l’une de représentation simplifiée de la réalité, perçue d’un certain point de vue par le modélisateur, à travers un filtre conceptuel : un modèle est donc une interprétation et non simple reproduction, - l’autre, d’instrument d’étude de cette réalité, conçu pour répondre à un certain objectif guidant l’ensemble des choix faits au cours de la modélisation : un modèle est donc aussi une représentation orientée et sélective. D’où le caractère doublement relatif d’un modèle, qui dépend tout à la fois de la justesse des conceptions et hypothèses sur lesquelles il repose et de l’objectif poursuivi. Ainsi, il est nécessaire, bien que cela soit trop souvent oublié, d’expliciter clairement les objectifs poursuivis, les choix, hypothèses et approximations de l’outil, et enfin définir, si c’est possible, les limites de son domaine de validité et donc définir son champ d’application. 2.1.2 Les différents types de modèles On distingue généralement trois grands types d’approches pour la mise au point de modèles : l’approche statistique, l’approche conceptuelle et l’approche déterministe ou mécaniste. - avec l’approche empirique : on cherche à lier les différentes variables ou grandeurs du système à partir de séries de données expérimentales en utilisant des techniques statistiques telles que les régressions simple ou multiple, linéaire ou non linéaire, sans chercher à comprendre les mécanismes réellement en jeu, - avec l’approche conceptuelle : on cherche à établir des relations aussi bonnes que possible entre les entrées et les sorties du système à travers un ensemble de variables d’états qui peuvent ou non, avoir un sens physique,

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 7 - avec l’approche mécaniste : on cherche à décrire par les équations de la mécanique, de l’hydraulique, de la chimie et de la biologie, l’ensemble des phénomènes qui se produisent dans le système considéré. 2.1.3 Les problèmes à résoudre De nombreux problèmes restent à résoudre pour parvenir à des modèles qui soit à la fois fondés scientifiquement et opérationnels. En effet, toute modélisation est assujettie à des erreurs difficiles à réduire ou à compenser, provenant tant du modèle que des données et de leurs interactions au cours de la modélisation. En effet, on rencontre différents problèmes : - les erreurs liées à la structure du modèle : les limites théoriques (par exemple en hydraulique), les approximations théoriques, les approximations numériques (solutions approchées) et les approximations spatiales (description du bassin versant), - la disponibilité des données : les problèmes métrologiques et méthodologiques, - l’adéquation des données au besoin de la modélisation, - le calage et la validation du modèle. Toute modélisation nécessite des phases de paramétrisation et de vérification du modèle qui, en plus des variables d’entrée, font appel à des chroniques de mesures de certaines variables de sortie. Le Calage : Faute de pouvoir mesurer ou estimer certains des paramètres du modèle ET compenser sur ces seuls paramètres les erreurs liées au modèle et/ou aux données, il est nécessaire de les estimer par calibration (ou calage), en optimisant (manuellement ou automatiquement) l’ajustement de certaines variables simulées à leurs valeurs mesurées. La Validation : l’étape de calage ne suffit cependant pas à valider les modèles et donc à s’assurer de leur « réalisme ». Il reste encore à vérifier la qualité du modèle calibré sur des séries de mesures non utilisées lors du calage. Cette validation doit être menée d’une part sur d’autres périodes sur le même bassin et d’autres parts sur d’autres sites, étape qu’on nommera Transposition. Ainsi, il est tout à fait indispensable de réaliser les phases de calibration, validation et transposition du modèle étudié. Si en terme de modélisation hydraulique (Barré de Saint Venant, Muskingum), les différentes étapes de mise au point et de tests sont maintenant courantes , il n’en est pas du tout de même pour la modélisation de la pollution. La grande majorité des modèles de pollution sont présentés comme étant en phase de validation, sans justification de la phase de calibration, et sans que les cas de validation soient véritablement nombreux. De plus, la phase de transposition en pollution reste quasi inexistante. Enfin, il est essentiel de rappeler qu’un modèle de simulation de la pollution se doit d’être en premier lieu un modèle de simulation de l’hydraulique, car l’hydraulique est indispensable à l’évaluation de la pollution.

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 8 Modèle mécaniste Modèle conceptuel Modèle Empirique ++++++ Complexité et Difficulté de résolution Nombre de paramètres et difficulté de calage ++++++ - - - - - - - - - - 2.2 Etapes méthodologiques Si la construction d’un modèle calé par rapport à des observations expérimentales est assez aisée, l’élaboration d’un modèle convenablement validé est au contraire très difficile. Le fait de ne pouvoir atteindre que très rarement la totalité des objectifs fixés par les critères de justification ne doit pas empêcher de construire des modèles qui, même insuffisants, guident le travail de réflexion et d’observation. Mais il est au moins aussi utile de savoir apprécier où se situent les insuffisances, afin de pouvoir progresser. Il reste indispensable que l’élaboration d’un modèle soit une interaction entre expérience et théorie. On représente sous forme de schéma, les différentes étapes méthodologiques de la mise en œuvre d’un modèle (Figure 2).

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 9 Définition du Problème Informations à priori Données à priori Analyse du système Construction du modèleAcquisition de données Analyse de sensibilité à priori oui non Calage et Vérification du modèle oui non non oui non oui Validation du modèle Transposition du modèle Utilisation du modèle Définition des objectifs de la modélisation Figure 2 :Etapes méthodologiques dans la mise en œuvre des modèles.

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 10 3. PRISE EN COMPTE DES DONNEES Les données nécessaires à la construction et à l’exploitation des différents logiciels sont de deux types : les données du site et les données « mesurées » événementielles. Elles sont présentées sous forme de schéma ci-dessous. SURFACE IMPERMÉABILISATION PENTE (TOPOGR.) ALLONGEMENT TYPE D'ACTIVITÉS REJETS E.U. DÉPÔTS INITIAUX AU SOL BASSIN VERSANT STRUCTURE DIMENSION PENTES RUGOSITÉS APPORT PARASITE RESEAU APPORTS SPÉCIFIQUES DÉPÔTS INITIAUX PÉRIODE DE TEMPS SEC HYÉTOGRAMME PLUIE DONNEES (calage-validation) DÉBITS FLUX POLLUANTS Figure 3 : Les données nécessaires à la modélisation. • Les données du site Les données d’entrée traduisant les caractéristiques des différents éléments de la schématisation préalable (description de la topologie des bassins versants et des réseaux), sont également les données indispensables à la description du modèle mathématique pour un logiciel de simulation. Les données topologiques caractérisent l’ensemble des éléments déterminés lors de la schématisation préalable du système, à savoir les nœuds de calculs, les liens entre les nœuds et les types d’occupation de sol. • Les données « mesurées » événementielles Les données événementielles comprennent essentiellement des mesures par temps sec et par temps de pluie. Au moins une campagne de mesure en temps sec et trois événements pluvieux sont nécessaires pour le calage et la validation du modèle. Ceci est bien entendu un minimum.

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 11 3.1 Origine et types de données du site Cette partie comprend principalement la collecte et la synthèse des données disponibles relatives à la zone d'étude, qui correspond a priori à sa zone d'assainissement collectif actuelle (ou prévisible à court terme). Il faut donc tout d’abord définir précisément le périmètre de la zone étudiée. Les données peuvent être analysées à partir des documents existants suivants : - plans et cartes, photos aériennes récentes ; - études antérieures (assainissement, urbanisme, environnement, ...) ; - notices de fonctionnement (usine d'épuration, ouvrages spécifiques) ; - registres d'exploitation (curages, branchements, travaux, ...) ; - conventions spéciales de déversement (CSD), passées avec les industriels ; - plans d'occupation des sols (POS) ; - bases de données locales (consommations d'eau potable, données pluviographiques, ...) ; - outil cartographique existant ; - … Les données a collecter sont celles relatives à la consommation d’eau potable , à la population, au réseau d’assainissement et a son fonctionnement et au bassin versant étudié Données relatives à la consommation d’eau potable : Ces données seront collectées auprès de l’exploitant sous la forme des consommations annuelles (pour plusieurs années), particulières ou industrielles. La discrétisation des consommations se fera rue par rue, afin que le Chargé d’Etude puisse affecter cette consommation d’eau potable à chaque bassin versant défini lors de la schématisation. Données relatives à la population : La population existante sera déterminée à partir du dernier recensement disponible et actualisée à partir d’informations plus récentes fournies par les services municipaux. Comme pour la consommation d’eau potable, les données relatives à la population seront discrétisées de façon à ce que le Chargé d’Etude puisse affecter ces données à chaque bassin versant défini lors de la schématisation. L’évolution de la population à court, moyen et long terme devra également être pris en compte, afin de pouvoir l’intégrer le cas échéant dans les scénarios de simulation en phase d’exploitation du modèle. Données relatives au bassin versant étudié : Ces données concernent, la zone d'étude (topographie, urbanisation actuelle et prévisible, industries et activités présentes et pressenties,.), la climatologie locale (pluviométrie, température,..), la géologie et l'hydrogéologie locale (position et variation des nappes, ..). Données relatives au réseau d’assainissement et à son fonctionnement : Ces données concernent le réseau de collecte existant (type de système, tracé, sections, pentes, cotes planimétriques et altimétriques, état des raccordements, rejets industriels, ….) et ses ouvrages spécifiques (déversoirs d'orage, bassins de stockage, chambres de dessablage, postes de relèvement et de refoulement, siphons, exutoires, …), ainsi que, le cas échéant, l'usine d'épuration existante.

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 12 3.2 Les données « mesurées » événementielles En hydrologie urbaine, les termes de mesure ou de métrologie sont associés à un ensemble de méthodes et d’outils ayant trait aux appareils de mesure, au suivi, à l’analyse et au traitement des données en différents points du système d’assainissement. Ce paragraphe sur la métrologie en hydrologie urbaine a pour objectif de présenter de manière succincte, les grandeurs mesurables, les spécificités de la mesure en réseau d’assainissement ainsi que les mesures de pluie, de débit et de pollution pouvant être appliquées dans un objectif de modélisation. Etant donné les nombreux ouvrages existants sur le thème des appareils de mesures et leur utilisation, les paragraphes ayant trait aux différentes mesures se concentreront plutôt sur les différentes informations à recueillir, les erreurs dont elles peuvent être entachées et des exemples d’analyse de ces données. 3.2.1 Les grandeurs mesurables Les paramètres à mesurer (en dehors des données structurelles du site) peuvent se regrouper en trois grandes catégories, à savoir la pluie, le débit, et la pollution. La mesure de la pluie est essentielle puisque les précipitations représentent la variable d’entrée du système d’assainissement. La pluie est un phénomène variable dans le temps et l’espace et sa mesure est généralement faite point par point et exprimée en terme d’intensité en fonction du temps (ou hyétogramme). Les mesures de débit et de pollution doivent se faire de façon simultanées, en temps sec ou en temps de pluie et sont elles aussi déterminantes puisqu’elles représentent les deux plus importantes variables de sortie du système d’assainissement. Leurs mesures se font généralement en terme de débit et concentration en fonction du temps (hydrogramme et pollutogramme). Néanmoins, si on commence à disposer d’une « solide » expérience et même de pouvoir « quantifier » les erreurs et imprécisions dans le domaine de la mesure de la pluie et des débits, il n’en est pas de même dans le cas des mesures sur les concentrations. Si les mesures de la pluviométrie et du débit se font en continu, sur toute la durée de la campagne de mesures, la mesure des matières polluantes s'effectue ponctuellement (manuellement ou automatiquement), par temps sec et par temps de pluie. Par temps de pluie, il, faut que : - L'événement pluvieux soit suffisamment "significatif" pour que les résultats des mesures puissent être interprétés. Ce terme "significatif", on l'entend bien sûr pour l'écoulement généré : . en termes de quantité, les pluies dont la hauteur d'eau précipitée est faible risquent de donner des résultats difficilement interprétables ; . en termes de qualité, les pluies intervenant par exemple dans une période de pluviométrie abondante n'apporteront que peu de matières polluantes par ruissellement et, là encore, les résultats seront délicats à interpréter.

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 13 - Le nombre de pluies faisant l'objet de mesures complètes (y compris l'analyse des paramètres représentatifs des matières polluantes) soit le plus important possible, afin de pouvoir dégager des corrélations nettes et des conclusions solides. - Si la mesure a pour but immédiat de caler un logiciel de modélisation, les deux contraintes développées ci-dessus doivent être respectées. Ainsi, on s'attachera particulièrement à n'analyser que des écoulements engendrés par des pluies bien isolées, avec une hauteur d'eau totale précipitée importante (au moins 5 mm), une ou des intensités maximum importantes. De plus, le nombre de pluies analysées devra être au moins égal à trois. 3.2.2 Spécificité des mesures par temps de pluie Les mesures en réseau d’assainissement présentent des caractéristiques et des contraintes spécifiques qui rendent difficile leur mise en œuvre et leur exploitation. En dehors de l’aspect purement financier d’une campagne de mesure (qui est tout de même la contrainte principale), le caractère événementiel et extrêmement variable de la pluie induit la nécessité de disposer de différents appareils de mesure fiables, prêts à fonctionner à tout moment de manière synchrone et de pouvoir supporter des conditions délicates comme par exemple des mises en charge du réseau. De plus, il est nécessaire de rappeler qu’il s’agit de mesures sur des effluents urbains qui transitent dans des réseaux insalubres et dont l’environnement est « hostile » à la mesure (milieu humide, pouvant être corrosif,...). L’analyse de différentes campagnes de mesures [Cherrered 1990] a permit de définir plusieurs critères importants dans le choix d’une méthodologie. Les principaux sont : les objectifs, les paramètres à mesurer, le choix du site de mesure et enfin les moyens disponibles. « Une campagne de mesures par temps de pluie ne s’improvise pas et doit répondre à des objectifs précis qui auront été définis préalablement en fonction des besoins de l’utilisateur final des résultats. Il sera ainsi possible de faire toutes les mesures nécessaires et rien que les mesures nécessaires » [Bertrand-Krajewski 1996] Il est donc indispensable d’analyser les différentes données disponibles et de les critiquer. 3.2.3 Mesure des pluies Bien que cette mesure ne soit pas directement liée à l'effluent en lui-même, il est nécessaire, que ce soit pour comparer des mesures entre elles ou utiliser un logiciel de modélisation, d'avoir une idée précise de la pluviométrie durant la campagne de mesures sur le système d'assainissement. Cette précision doit permettre de connaître, sur des intervalles de temps relativement courts (classiquement 5 minutes), la hauteur d'eau précipitée, c'est-à-dire l'intensité moyenne sur chaque pas de temps. C'est la relative rapidité du cycle "pluie - ruissellement sur le sol - écoulement en réseau" qui nous oblige à considérer la discrétisation de la pluie sur des pas de temps courts. A ce titre, les données pluviométriques de Météo France (sur la journée, ou sur des pas de temps souvent supérieurs à l'heure) sont insuffisantes. Il existe actuellement deux principales techniques pour la mesure des précipitations en hydrologie urbaine : le pluviographe ou le réseau de pluviographes et le radar météorologique. Le type de pluviographe le plus courant, c’est à dire celui à augets basculant, est bien entendu un appareil non parfait et à ce titre, les mesures sont donc entachées d’erreurs multiples.

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 14 La précision globale des mesures pluviographiques, réalisées en respectant les règles de bases, peut alors être estimée à environ 10% pour des pluies courantes, mais pouvant être largement supérieures dans le cas de fortes intensités par exemple. Un des moyens d’analyser les événements pluvieux disponible est la représentation sous forme de courbes IDF (Intensité-Durée-Fréquence), comme le propose la Figure 4. IDF : modèle probabiliste de l’intensité de pluie extrême au cours d’un événement pluvieux. Les courbes donnent la fréquence (ou période de retour) au cours d’un événement pluvieux d’une intensité maximale moyenne pendant une certaine durée. L’événement pluvieux caractérisé est utilisé en entrée d’un modèle hydrologique simple pour déterminer la probabilité de défaillance des ouvrages de stockage ou d’évacuation des eaux pluviales. 0 0.1 0.2 0.3 0.4 0 200 400 600 800 1000 1200 1400 Durée de pluie (mn) Intensitémoyenne(mm/mn) Maurepas Les Ulis Nord Mantes la Ville Massy Brest Fresne-Choisy Entzheim IDF T=1an IDF T=2an IDF T=5ans Figure 4 : Exemple d’Analyse des pluies à l’aide des courbes IDF, Région 1. 3.2.4 Mesure du débit La fiabilité de la mesure de débit est primordiale, car l'hydraulique sert de base au dimensionnement du réseau et car elle est le vecteur des matières polluantes. Il est donc nécessaire de mesurer le débit avec un pas de temps le plus fin possible (autour de la minute, voire moins), pour bien décrire l'hydrogramme (courbe de débit en fonction du temps), surtout en ce qui concerne les pointes. Comme pour la mesure de la pluie, les erreurs de mesures peuvent provenir soit des phénomènes mesurés, soit des techniques de mesures : régime d’écoulement par temps de pluie, conditions hydrauliques proches de la section de mesure, mise en charge... On trouve dans la littérature quelques chiffres d’erreurs de 5 à 25% selon les conditions de l’appareil [Maksimovic 1986]. La précision globale des mesures de débit, réalisées en respectant les règles de bases, peut alors être estimée à environ 10%, mais pouvant être largement supérieure dans le cas de faibles débits ou de mises en charge par exemple.

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 15 Un des moyens non pas d’analyser les mesures de débits à proprement dit mais plutôt d’analyser conjointement la pluie et le débit (ou dans certains cas la hauteur d’eau) est de représenter sur le même graphique les deux grandeurs et de vérifier la concomitance des informations fournies. Un exemple est proposé en Figure 5. Hauteur B1 - 24/02 au 06/03/00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 24/2 25/2 26/2 27/2 28/2 29/2 1/3 2/3 3/3 4/3 5/3 6/3 hauteur(m) 0 2 4 6 8 10 12 14 16 intensité(mm/h) mesurée simulée Figure 5 : Exemple d’Analyse pluie-Débit, Hauteur dans le bassin de Gentilly à Nancy. 3.2.5 Mesure de la pollution Les matières polluantes contenues dans un effluent urbain peuvent être décrites, de façon plus ou moins fine, par des paramètres significatifs d'une partie de ces matières. Certains de ces paramètres, tels la turbidité, le pH, la conductivité, peuvent être mesurés en continu, mais cela nécessite à chaque fois des matériels spécifiques, souvent très contraignants en termes de maintenance. Pour simplifier la mise en place du matériel et limiter les coûts, il faut s'en tenir aux paramètres que l'on mesure sur des échantillons prélevés dans l'effluent que l'on veut caractériser. En fonction du budget et du matériel disponibles, il est alors possible de définir une liste "économiquement et techniquement minimale", qui comprend, dans notre cas, les paramètres simulés par la plupart des logiciels : MES, sur eau brute, DCO, sur eau brute et eau filtrée, DBO5, sur eau brute et eau filtrée, N-NH4, sur eau brute, NTK, sur eau brute et eau filtrée. Le pollutogramme mesuré représente la donnée indispensable à l’étude et à la modélisation de la pollution et l‘évaluation de ses erreurs est déterminante. La détermination d’un pollutogramme nécessite la réalisation d’une procédure analytique qui comprend généralement : l’échantillonnage, le transport et la conservation des échantillons et l’analyse physico-chimique. En reprenant les différentes étapes de la procédure analytique et en considérant, en première approche les erreurs comme étant indépendantes, on peut alors présenter les résultats sous forme synthétique à la Figure 6. L’ordre de grandeur proposé de 31% se rapproche de la proposition de [Ruban et al. 1993] qui proposait environ 25% d’erreurs sur la mesure des MES avec un

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 16 intervalle de confiance de 90%. En première hypothèse, les erreurs des polluants majoritairement sous forme particulaire (plus de 80%) comme la DCO ou la DBO5 présentent le même ordre de grandeur, erreurs variant bien sûr en fonction de la répartition particulaire/soluble. Echantillonage Transport et conservation - matérialisation : 20% - intégration : 12% 1% Analyse Pollutogramme 20% Total (MES) 31% (erreurs indépendantes) Figure 6 : Procédure analytique de détermination d’un pollutogramme et erreurs pour les MES, adapté d’après [Rossi 1998]. La Figure 7, propose un exemple d’analyse de différents polluants ou de rapport de polluants en fonction de trois types de réseaux d’assainissement synthétisé dans le tableau ci-après et les Figure 8 et Figure 9 deux exemples d’analyses conjointes de la pluie, du débit et de la pollution. Classe de réseau Nature des effluents Type 1 Eaux pluviales avec ou sans écoulements de temps sec peu ou pas pollués Type 2 Eaux pluviales contaminées par des eaux usées Type 3 Effluents unitaires T3_MEST2_MEST1_MES ConcentrationMES(mg/l) 1600 1200 800 400 0 T3DCODBOT2DCODBOT1DCODBO RapportDCO/DBO5 20 15 10 5 0 Figure 7 : Exemple d’Analyse de la pollution, selon les différents types de réseaux.

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 17 0 2 4 6 8 Intensité(mm/h) 0 100 200 300 400 500 0 50 100 150 200 250 300 350 400 Temps (mn) Débits(l/s) Débit calculé Débit mesuré 0 50 100 150 200 250 0 50 100 150 200 250 300 350 400 Temps (mn) ConcentrationMES(mg/l) Horus mesures Ancien 0 25 50 75 100 0 50 100 150 200 250 300 350 400 Temps (mn) FluxMes(g/s) Mesures Horus Ancien 0 4 8 12 16 20 Intensité(mm/h) 0 10 20 30 40 50 60 70 0 90 180 270 360 450 540 630 720 Temps (mn) Débits(l/s) Débit calculé Débit mesuré 0 500 1000 1500 2000 2500 0 90 180 270 360 450 540 630 720 Temps (mn) ConcentrationMES(mg/l) Horus mesures Ancien 0 20 40 60 80 0 90 180 270 360 450 540 630 720 Temps (mn) FluxMES(g/s) Mesures Horus Ancien Figure 8 : Exemple d’Analyse Pluie-Débit- Pollution (pluvial), Brest. Figure 9 :Exemple d’Analyse Pluie-Débit- Pollution (unitaire), Entzheim 3.2.6 Synthèse des erreurs de mesures Après avoir succinctement abordé les différentes mesures nécessaires à une modélisation de la pollution et particulièrement des MES, on reprend ici les différentes erreurs dont peuvent être entachées les mesures de pluie, débit et de MES (Figure 10). Comme on l’a précisé précédemment, les erreurs sont supposées indépendantes et le chiffre proposé de ±35% est calculé à partir d’un certain nombre d’hypothèses qu’il sera nécessaire de vérifier.

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 18 Mesure de la Pluie Mesure des Débits ±10% Mesure des MES ±31% Total ±35% (erreurs indépendantes) ±10% Figure 10 : Synthèse des erreurs de mesures de la pluie aux MES

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 19 4. LES PRINCIPAUX PHENOMENES 4.1 Modélisation quantitative La modélisation quantitative comporte une partie hydrologique et une partie hydraulique. Cette étape est essentielle puisqu’elle permettra la modélisation qualitative et qu’il existe des interactions entre l’hydrologie et le lessivage des surfaces et entre l’hydraulique et le transport solide en collecteur. La Figure 11 propose les détails des fonctions de production et de transfert pour la partie quantitative. Pluie Interception par la végétation Evaporation Evapotranspiration Ruissellement vers des zones non drainées Eau parvenant à la surface du sol Evaporation Ruissellement en surface Stockage dans les dépressions du sol Infiltration Infiltration profonde Ecoulement hypodermique Ruissellement vers le réseau Eau arrivant au réseau Pluviométrie Fonction de production Fonction de transfert Figure 11 : Détails et interactions entre les fonctions de production et de transfert. 4.1.1 Transformation pluie brute-pluie nette Avant ruissellement, la pluie mesurée, appelée pluie brute va subir un certain nombre de pertes. Ces pertes sont diverses : l’interception par la végétation (0.2 à 1.5 mm), le stockage dans les dépressions des surfaces artificielles (0.2 à 3 mm) ou naturelles (3 à 30 mm), ou encore par infiltration. Ces pertes représentent des phénomènes complexes, mal connus dans le détail et surtout inaccessibles. Les différentes pertes sont synthétisées en Figure 11, mais les trois modèles les plus simples mais assurant une représentativité satisfaisante [Jovanovic 1986] sont:

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 20 - une perte initiale constante en mm, - une perte continue constante pendant la durée de la pluie en mm/h, - une perte continue proportionnelle à l’intensité, pendant la durée de la pluie, en mm/mm. Concernant les pertes continues, la loi d’infiltration d’Horton s’écrit : kt c0c e)ff(f)t(f − −+= f(t) : capacité d’infiltration fc : capacité d’infiltration du sol saturé de 3 à 200 mm/h fo: capacité d’infiltration maximum du sol (sol sec : fo = 4.fc) k : constante de temps positive => calé en laboratoire entre 0.05 et 0.1 4.1.2 Transformation pluie nette-ruissellement Le ruissellement sur les surfaces imperméables est un phénomène qui peut être décrit par les lois de la mécanique des écoulements à surface libre en régime transitoire. La fonction de transfert va transformer le débit de pluie nette en débit à l’exutoire. Il s’agit là d’un opérateur conservatif (volume en entrée = volume en sortie). Son seul but est de représenter les transformations de la forme de l’onde de débit lors de son passage à travers le bassin versant. Le plus couramment utilisé pour des bassins versants urbains est le modèle à réservoir linéaire qui traduit l’hypothèse, qu’à un instant donné, il existe une relation de proportionnalité entre le volume d’eau S stocké dans une zone de collecte et le débit Q(t) qui est évacué à la sortie de celle-ci. Le modèle est donc établi à partir des deux équations suivantes : - une équation de stockage : S t K Q t( ) . ( )= - une équation de continuité : dS t dt Q t i t ( ) ( ) ( )+ = Après intégration et discrétisation au pas de temps ∆t, et i(N) l’intensité de la pluie supposée constante au pas de calcul N, nous pouvons écrire : Q N Q N e i Nt K ( ) ( ). ( ). ( )/ = − + − − 1 1 ∆ Ce modèle est simple et ne comporte comme seul paramètre que le lag-time K. D’après l’équation de continuité, K est homogène à un temps et représente le décalage physique entre le centre de gravité du hyétogramme de pluie nette et celui de l’hydrogramme de ruissellement. La valeur du coefficient est déterminé selon les cas : - par la formule de Desbordes (1984) : K K Ar Pnt pr DP Lng Hpe= +− − − 1 10 18 0 36 1 9 0 21 0 15 0 07 . . .( Im ) . . .. . . . . . Equation 4-1 avec : K1 : paramètre de calage

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 21 DP : durée de la pluie (mn) Hpe : hauteur de la pluie (mm) - directement par l’utilisateur, - par calage automatique à l’aide d’une méthode d’optimisation numérique à variables multiples en minimisant une fonction objectif. Le tableau ci-après propose des éléments de choix des modèles de production et de transfert. Bassin versant Evénement pluvieux Modèle de pertes Modèle de ruissellement B.V. urbain Pluie moyenne ou forte (de 20 mm à 100 mm en quelques heures) Coefficient de ruissellement constant et égal au coefficient d’imperméabilisation Modèle du réservoir linéaire B.V. urbain Pluie faible à moyenne (de 2 mm à 20 mm en quelques heures) Pertes initiales et coefficient de ruissellement Modèle du réservoir linéaire Bassin versant peu urbanisé Pluie faible à forte (de 5 mm à 100 mm en quelques heures) Pertes initiales et infiltrations (modèle de Horton) Modèle de Nash 4.1.3 Hydraulique Le ruissellement des surfaces imperméables, les eaux usées et autres apports, sont alors localement injectés dans le réseau d’assainissement et s’y propagent de manières très diverses. Le réseau est alors constitués de collecteurs de différentes caractéristiques et d’un certain nombre de singularités comme des déversoirs d’orage, des regards de visite.., singularités dont le fonctionnement hydraulique est parfois « mal » connu. 4.1.3.1 Propagation des Hydrogrammes :Le modèle classique de Muskingum La propagation des débits dans les collecteurs est modélisée par la méthode dite de Muskingum- Cunge (hydraulique simplifiée par rapport à la résolution complète des équations de Barré de Saint Venant). En effet, ce modèle ne tient pas compte des influences aval mais, selon [Semsar 1995], « dans de nombreux cas, des modèles utilisant des formulations simples de type Muskingum, peuvent conduire à des résultats quasi similaires à ceux du modèle de Barré de Saint Venant. Plus le modèle est sophistiqué, plus il est consommateur de temps de calcul et nécessite un ajustement difficile de ses paramètres de calcul ». Les équations régissant le modèle de Muskingum (conceptuel) sont : [ ]⎪ ⎩ ⎪ ⎨ ⎧ α+α= −= stockagedeéquation)t(Q)-(1)t(QK)t(V débitsdesonconservatideloi)t(Q)t(Q dt )t(dV SeS Se S

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 22 4.1.3.2 Propagation des Hydrogrammes Le modèle de Barrée de Saint Venant Les équations régissant le modèle de Barré de Saint Venant (déterministe) sont : ( )⎪ ⎪ ⎩ ⎪⎪ ⎨ ⎧ ε−= ∂ ∂ + ∂ ∂ α ∂ ∂ = ∂ ∂ + ∂ ∂ + ∂ ∂ dynamiqueéquation S U q1-+)Jg(J x h g x U U+ t U continuitédeéquationq t S x U S x S U lef l 4.1.3.3 Singularités hydrauliques Un réseau d’assainissement peut contenir de nombreux ouvrages spécifiques, qu’il est difficile de détailler ici et seuls les déversoirs et bassins d’orage seront brièvement abordé ici. Les déversoirs d’orage sont les véritables « soupapes de sécurité » du réseau d’assainissement et donc des vecteurs privilégiés de la pollution vers des milieux naturels. Il existe de nombreux types de déversoirs et ceci tant au niveau de leurs géométrie que de leur fonctionnement. Si on ne dispose pas aujourd’hui de modèles mathématiques performants pour chacun d’entre eux, un outil nommé CalDO (Engees/Ar) sera disponible en 2003 pour l’ensemble des déversoirs de type latéraux. Le principe de fonctionnement est présenté schématiquement à la Figure 12. OUVRAGE DE DERIVATION Amont Aval Déversement DEVERSOIR D’ORAGE Figure 12: Schéma de principe d’un déversoir d’orage. Les bassins d’orage remplissent le double rôle de limitateur des risques d’inondations en offrant au réseau une capacité de stockage supplémentaire et de limitateur de rejets polluants au milieu naturel. Ces ouvrages comportent différents modes de fonctionnement et peuvent être associés à des déversoirs d’orage. Il est donc possible de les représenter (voir Figure 13) par un système global comprenant des déversoirs, un bassin et des organes de contrôle.

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 23 Bassin DO Amont Aval Vers milieu naturel Vanne Déversoir controlé Vanne DO Figure 14: Schéma de principe d’un système global de bassin d’orage. 4.2 Modélisation qualitative La Figure 15 propose en détail les fonctions de production et de transfert pour la partie qualitative. Temps de pluie Transformation pluie-débit Eaux usées Pollution résiduelle en surface après le dernier événement pluvieux Accumulation de la pollution en surface en temps sec Sol et toiture Atmosphère Lessivage Arrachement Transport en surface Entrée de la pollution dans le réseau par les avaloirs Ecoulement dans le réseau Charriage Suspension Sédimentation Erosion Remise en suspension Temps sec Ensemble de la pollution en surface avant l’événement pluvieux Milieu naturel STEP Fonction de transfert Fonction de production Figure 15 : Vue schématique des principaux phénomènes pour la modélisation qualitative

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 24 4.2.1 Les fonctions de production en surface de bassin versant Classiquement, il existe trois manière de traduire une fonction de production de la pollution : • on utilise un modèle dans lequel les concentrations des eaux usées et pluviales en entrée de réseau sont constantes, • on utilise un modèle dans lequel les concentrations sont constantes pendant une pluie mais étant variables d’un événement pluvieux à l’autre. Dans ce cas, différents modèles existent et le modèle dit de « Cèdre », se traduit par c max ba I.Ht.Dts.KC = avec - C : concentration recherchée (mg/l) ; - Dts : durée de temps sec (j) ; - Ht : Hauteur totale précipitée (mm) ; - Imax : intensité maximum (mm/h) ; - K, a, b, c : coefficients numériques à caler. • on utilise des modèles dans lequel les concentrations sont variables pendant une pluie et d’un événement pluvieux à l’autre, on distingue généralement , l’accumulation, le lessivage et le transport. Accumulation sur les surfaces urbaines : Différentes formulations existent dans la littérature, mais le modèle d’accumulation asymptotique proposé par [Alley 1981] semble faire l’unanimité pour ce qui est d’une utilisation opérationnelle (même ci certains auteurs la remettent en question). L’équation classiquement utilisée est celle du SWMM qui se traduit par : ( )Mo Mro Exp Disp DTS Accu Disp Exp Disp DTS= − + ⋅ − −. ( . ) ( . )1 avec : - Mo la masse présente au sol au début de la pluie après une période de temps sec (DTS), - Mro la masse résiduelle de dépôts à la fin de la pluie précédente, - Disp un coefficient de disparition, - Et Accu un coefficient d’accumulation Lessivage des surfaces urbaines : L’algorithme initialement proposé par le SWMM [Jewell-Adrian 1978] est utilisé dans la majorité des modèles numériques ou logiciels actuels. L'érosion des particules est donc décrite par l'équation proposée par [Jewell et Adrian 1978, Alley 1981] et reprise dans FLUPOL [Bujon 1988, Bujon et Herremans 1990]. Cette équation traduit la proportionnalité de la masse disponible à l'intensité de la pluie et s’exprime : dMa t dt Ka Ma t ( ) . ( )= − avec Ka b i t b i tb b = +1 32 4 . ( ) . ( ) ( )Mo Mro Exp Disp DTS Accu Disp Exp Disp DTS= − + ⋅ − −. ( . ) ( . )1

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 25 avec : - Ma la Masse déposée à l'instant t, donc calculée lors de l’accumulation - i(t) l'intensité de pluie nette de la pluie - et b1, b2, b3 et b4 des paramètres de calage Propagation des polluants par le ruissellement :Pour la propagation des particules en surface, on utilise classiquement [Bujon 1988, Bertrand-Krajewski 1991] un modèle de réservoir linéaire en considérant qu'il existe une relation de proportionnalité entre la masse présente au temps t et le flux au temps t. Concernant la réaction de ce réservoir (à partir du lag-time), [Brombach 1984] estime, en s'appuyant sur des résultats expérimentaux, que la célérité des ondes qui transportent les particules est de l'ordre de deux fois plus élevée que la vitesse de déplacement de l'eau. De nombreux essais montrent, que l'évaluation de ce lag-time comme fraction de celui utilisé pour le ruissellement [Desbordes 1984] permet une amélioration notable des résultats. 4.2.2 Les fonctions de transfert en réseau 4.2.2.1 Comportement des particules solides Le comportement des particules à l'intérieur du réseau d'assainissement dépend de leurs caractéristiques physiques. Les caractéristiques de ces particules, essentiellement minérales peuvent être décrites par leur diamètre, leur densité ou encore leur vitesse de chute. Devant l'extrême variabilité des solides en réseaux d'assainissement et leur large classes de caractéristiques physiques, les différents logiciels de simulations de la pollution ont pris des options différentes : - Mosqito avait la possibilité de distinguer 9 classes de particules différentes et propose d'en utiliser trois dont une correspondant aux eaux usées, et deux aux eaux de temps de pluie, - Mousetrap propose l'utilisation de trois classes de particules caractéristiques des solides provenant de la surface, des particules en suspension et des dépôts en collecteur, - Hypocras utilise 2 classes granulométries, correspondant aux eaux usées et aux eaux de temps de pluie, -Infoworks CS peut traiter neuf classes de particules différentes et en utilise deux dans sa version actuelle, - Canoe peut traiter plusieurs classes de particules différentes - Flupol distingue deux types de particules, celle des eaux usées et celle des eaux pluviales. 4.2.2.2 Concernant le transport "solide" Le transport (total) de sédiments par l'eau est l'ensemble du transport (de particules) solide qui passe dans une section du collecteur d'assainissement. On classe habituellement (un peu de manière artificielle) le transport de sédiments en différents modes correspondant à des mécanismes physiques de base relativement distincts:

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 26 - transport par charriage : caractérise les particules se déplaçant en glissant ou roulant ou en faisant des petits bonds sur le fond, - transport en suspension : caractérise les particules déplaçant par bonds (relativement longs) et restant entourées d'eau, - transport en suspension intrinsèque ou transport en solution: caractérise les particules emportées par l'écoulement et ne se déposant jamais; On appelle transport solide total le débit solide transporté par charriage et par suspension (on peut éventuellement, selon les auteurs y ajouter le transport en suspension intrinsèque). On présente ci-dessous le schéma des différents modes de transport: Figure 16: Les différents modes de transport solide D’une manière générale, la plupart des logiciels du « commerce » (Mousetrap propose la distinction des différents modes de transport), contiennent des algorithmes ayant trait au transport total des particules. De nombreux modèles existent mais seuls deux d’entre eux seront présentés ici : celui de Velikanov car étant de type énergétique et qui favorise la compréhension de la notion de capacité de transport du liquide et celui d’Ackers-White car étant basé sur des considération physique et le plus couramment utilisé dans les modèles. Le modèle de Velikanov L'équation énergétique de Velikanov permet de calculer la capacité de transport des matériaux en suspension pour un écoulement dont les caractéristiques hydrauliques sont connues. Cette équation, de type conceptuel, est basée sur la puissance gravitaire de l'écoulement nécessaire pour vaincre la résistance de l'écoulement et celle nécessaire au maintient des particules en suspension. Pour un type de particules elle s'écrit : CT s s U Je m s = − η ρ ω . . . . 1 avec : CT : Capacité de transport (kg/m3 ) η : Coefficient de rendement s : Densité relative des particules par rapport à l'eau ρe : Masse volumique de l'eau (kg/m3 ) Um : Vitesse moyenne de l'écoulement (m/s) ωs : Vitesse de chute des particules (m/s) J : Pente de la ligne d’énergie (m/m)

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 27 En fait, pour des conditions hydrauliques données, la concentration des matériaux transportables n'est pas unique et se situe dans une plage limitée par deux courbes correspondant respectivement à la concentration maximale et minimale pouvant être transportée. On traduit cette plage par les équations suivantes : CT i s s U Je m s min . . . .= − η ρ ω 1 1 CT i s s U Je m s max . . . .= − η ρ ω 2 1 Caractéristiques Hydrauliques CT CT Max CT Min TRANSPORT EROSION SEDIMENTATION avec : CTmini : Capacité de transport critique de d’érosion (kg/m3 ) CTmaxi : Capacité de transport critique de sédimentation (kg/m3 ) η1 : Coefficient de rendement critique d’érosion η2 : Coefficient de rendement critique de sédimentation Si C est la concentration en MES, on définit les trois régimes de fonctionnement suivants : - si C<CTmini, il y a érosion des dépôts (s'il y en a ) jusqu'à ce que C=CTmini, - si CTmini<C<CTmaxi, il y a transport sans érosion ni sédimentation, - si C>CTmaxi, il y a sédimentation jusqu'à ce que C=CTmaxi. Le modèle d’Ackers-White Le modèle le plus couramment utilisé est celui d'ACKERS-WHITE (1973, 1980, 1991, 1994), basé sur des considérations de nombres adimensionnels en reliant le transport des particules au rapport contrainte de cisaillement/poids immergé des particules, ayant été utilisé dans MOSQITO, HYDROWORKS DM et MOUSETRAP, adapté aux conduites circulaires et faisant l'objet de multiples vérifications expérimentales (May 1995). Ses trois principales équations sont : F u g d s U R d gr h nn aw aw = − ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ − * . .( ) . .log( . / )35 35 1 1 32 12 G C F A gr aw gr aw maw = − ⎛ ⎝ ⎜ ⎞ ⎠ ⎟. 1

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 28 q G s d R U u d R S t gr h naw h m = ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟. . . . . . . *35 351 10 avec : Fgr : nombre adimensionnel de mobilisation des particules Ggr : nombre adimensionnel de débit solide Qt : débit solide u* : vitesse critique U : vitesse moyenne de l'écoulement Rh : rayon hydraulique S : densité de particules d35 : diamètre des particules (35% de la masse passante) naw, Aaw, maw et Caw : coefficients d'Ackers-White 4.2.2.3 Concernant le transport en solution Le transport en solution traite le déplacement des particules en suspension au sein du liquide (ou les particules très fines au sein du liquide qui ne se déposent jamais). On assimile le comportement de ce type de particule à celui d'une substance dissoute caractérisée par sa concentration et donc modélisée à partir soit de l'équation classique de convection diffusion ou d’une simplificiation : ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂t A c x U A c x K A c x x( . ) ( . . ) . .+ = ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ A : Section d'écoulement T : Temps X : Distance Kx : Coefficient de dispersion longitudinal U : Vitesse moyenne de l'écoulement 4.2.2.4 Les réactions dans les collecteurs Concernant la modélisation des réactions "physico-chimiques" dans les collecteurs, les formulations utilisées pourraient être celle testées en rivières ou en station d’épuration. De tels algorithmes, complets ou simplifiés sont déjà intégrés dans certains logiciels (Mousetrap par Exemple), mais ne sont pas encore utilisés de manière opérationnelle.

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 29 4.2.3 A titre d’Information A titre d’informations, une étude sur la comparaison des différents algorithmes de modélisation de la pollution a été réalisée en 1999 pour le compte de l’Agence de l’Eau Seine Normandie et une partie des conclusions ont été les suivantes : - concernant le lessivage, le modèle initialement proposé par le SWMM fournit des résultats satisfaisants, et une combinaison de modèles accroît la qualité de ses résultats. Les modèles conceptuels semblent donc tout à fait adaptés pour un outil de simulation de la pollution et présentent l’avantage d’être perfectionnés. Concernant les polluants majoritairement sous forme particulaire, un coefficient d’attachement aux MES permet l’obtention de résultats satisfaisants mais restent perfectibles, - concernant le transport solide, les modèles déterministes apparaissent comme extrêmement sensibles dans le cas d’érosion de dépôts en collecteurs. Pour un outil de simulation, il semble donc qu’il faille leur préférer les modèles de type conceptuels, comme Velikanov ou Wiuff. Le premier pouvant fournir des résultats très intéressants mais nécessitant un calage de deux paramètres, le second fournissant des résultats satisfaisants avec une valeur de paramètre fournie dans la littérature.

ANJOU RECHERCHE - ENGEES Modélisation des réseaux d’assainissement : Concepts-Approches et Etapes : Cours 3ème année de l’ENGEES 30 5. SCHEMATISATION, CALAGE, VALIDATION ET EXPLOITATION 5.1 Schématisation préalable D’un point de vue général, la mise en œuvre d’un modèle suppose une schématisation préalable du réseau et le découpage de la zone d’étude en bassins versants d’apport de caractéristiques homogènes, puis de la traduction de cette schématisation sous forme de fichiers pour l’outil de modélisa

Add a comment

Related presentations

L'Arbre à Vent, système éolien innovant en forme d'Arbre dont les feuilles agissen...

2 Kåre Fostervold

2 Kåre Fostervold

November 10, 2014

Perspectives on German-Norwegian Energy Cooperation Kåre Fostervold, State Secre...

3 Tor Eigil Hodne

3 Tor Eigil Hodne

November 10, 2014

Interconnecting Germany and Norway: Nordlink in the Context of Energy Security, ...

4 Øyvind Stakkeland

4 Øyvind Stakkeland

November 10, 2014

Value Creation by Interconnecting Norwegian Hydro and European Markets in Transiti...

5 Stefan Göbel

5 Stefan Göbel

November 10, 2014

Putting a Price on Security of Supply – Capacity Mechanisms Stefan Göbel, Head o...

6 Olav Johan Botnen

6 Olav Johan Botnen

November 10, 2014

Long Term Analysis for the German Power Market Olav Johan Botnen, Senior Analyst...

Related pages

Cours-Modélisation Des Réseaux d’Assainissement Concepts ...

Cours-Modélisation Des Réseaux d’Assainissement Concepts-Approches Et Etapes Cours 3ème Année de l ... MODELISATION DES RESEAUX D’ASSAINISSEMENT
Read more

Cours modelisation calage2010 - Environment

1. MODELISATION DES RESEAUX D’ASSAINISSEMENT CONCEPTS APPROCHES ET ETAPES COURS de 3ème ANNEE de l’ENGEES Par Mathieu ZUG et José VAZQUEZ Extrait…
Read more

Cours De Covadis Pdf - pdf : Cherchez.Me 1/20

1020 Résultats pour Cours De Covadis Pdf Format pdf - Page 1/20 (Temps écoulé: 0.0363)
Read more

Cours De Physique Chimie 3eme - pdf : Lire.Me 14/20

Cours De Physique Chimie 3eme Format pdf - Page 14/20 (Temps écoulé: 0.0318) Lire.Me; pdf; doc; xls; txt; ppt; rtf; 651 Les NouveautÉs Pour Les 4ème Et ...
Read more

COURS TECHNIQUES QUANTITATIVE DE GESTION - lire.me

COURS TECHNIQUES QUANTITATIVE DE GESTION Format pdf - Page 8/20 (Temps écoulé: 0.0538) ... 354 Modelisation Des Reseaux D’assainissement
Read more

MODELISATION DES RESEAUX D’ASSAINISSEMENT

MODELISATION DES RESEAUX D’ASSAINISSEMENT CONCEPTS APPROCHES ET ETAPES COURS de 3ème ANNEE de l’ENGEES Par Mathieu ZUG et José VAZQUEZ Extrait de ...
Read more

Modelisation En Hydrologie - pdf : Cherchez.Me 1/20

12600 Résultats pour Modelisation En Hydrologie Format pdf - Page 1/20 (Temps écoulé: 0.0461)
Read more

Modelisation Hydraulique Urbain - pdf : Cherchez.Me 1/20

Modelisation Hydraulique Urbain Format pdf - Page 1/20 (Temps écoulé: 0.0113) Cherchez.Me; pdf; doc; xls; txt; ppt; rtf; 1 Cours Hydraulique Générale ...
Read more