advertisement

Convegno sulla Resistenza al Fuoco, Cosenza 6 Febbraio 2014, Bontempi

50 %
50 %
advertisement
Information about Convegno sulla Resistenza al Fuoco, Cosenza 6 Febbraio 2014, Bontempi
Design

Published on March 10, 2014

Author: StroNGER2012

Source: slideshare.net

Description

Giornata di Studio: LA RESISTENZA AL FUOCO DELLE STRUTTURE COSENZA,
Universita' della Calabria, 6 Febbraio 2014
advertisement

1 Approccio sistemico per la sicurezza delle gallerie in caso di incendio e problemi strutturali specifici Prof. Dr. Ing. Franco Bontempi Ordinario di Tecnica delle Costruzioni Facolta’ di Ingegneria Civile e Industriale Universita’ degli Studi di Roma La Sapienza www.francobontempi.org Str o N GER 1

2 www.francobontempi.org Str o N GER 2

3 Scopo della presentazione • Far vedere gli aspetti piu’ generali della progettazione strutturale antincendio: Complessita’ del problema; Approccio sistemico; Natura accidentale dell’azione incendio; Progettazione prestazionale/prescrittiva; Aspetti specifici delle gallerie stradali. www.francobontempi.org Str o N GER 3

4 OGGETTO Caratteristiche delle gallerie Geometrie Impianti 1 www.francobontempi.org Str o N GER 4

5 GEOMETRIE www.francobontempi.org Str o N GER 5

6 Tipo A - autostrade www.francobontempi.org Str o N GER 6

7 www.francobontempi.org Str o N GER 7

8 Tipo B – extraurbane principali www.francobontempi.org Str o N GER 8

9 Tipo C – extraurbane secondarie www.francobontempi.org Str o N GER 9

10 www.francobontempi.org Str o N GER 10

11 www.francobontempi.org Str o N GER 11

12 www.francobontempi.org Str o N GER 12

13 www.francobontempi.org Str o N GER 13

14 www.francobontempi.org Str o N GER 14

15 www.francobontempi.org Str o N GER 15

16 www.francobontempi.org Str o N GER 16

17 www.francobontempi.org Str o N GER 17

18 Sistema vs Struttura www.francobontempi.org Str o N GER Opera Morta Opera Viva 18

19 IMPIANTI VENTILAZIONE www.francobontempi.org Str o N GER 19

20 www.francobontempi.org Str o N GER 20

21 Piston effect • Is the result of natural induced draft caused by free-flowing traffic (> 50 km/h) in uni-directional tunnel thus providing natural ventilation. www.francobontempi.org Str o N GER 21

22 Mechanical ventilation • “forced” ventilation is required where piston effect is not sufficient such as in – congested traffic situations; – bi-directional tunnels (piston effect is neutralized by flow of traffic in two opposite directions); – long tunnels with high traffic volumes. www.francobontempi.org Str o N GER 22

23 TUNNEL VENTILATION SYSTEMS • Road Tunnel Ventilation Systems have two modes of operation: • Normal ventilation, for control of air quality inside tunnels due to vehicle exhaust emissions: – in any possible traffic situation, tunnel users and staff must not suffer any damage to their health regardless the duration of their stay in the tunnel; – the necessary visual range must be maintained to allow for safe stopping. • Emergency ventilation in case of fire, for smoke control: – the escape routes must be kept free from smoke to allow for self- rescue; – the activities of emergency services must be supported by providing the best possible conditions over a sufficient time period ; – the extent of damage and injuries (to people, vehicles and the tunnel structure itself) must be kept to a minimum. www.francobontempi.org Str o N GER 23

24 Longitudinal ventilation system • employs jet fans suspended under tunnel roof; in normal operation fresh air is introduced via tunnel entering portal and polluted air is discharged from tunnel leaving portal. www.francobontempi.org Str o N GER 24

25 www.francobontempi.org Str o N GER 25

26 www.francobontempi.org Str o N GER 26

27 Semi-transverse ventilation system • employs ceiling plenum connected to central fan room equipped with axial fans; in normal operation fresh air is introduced along the tunnel trough openings in the ventilation plenum while polluted air is discharged via tunnel portals. www.francobontempi.org Str o N GER 27

28 Transverse ventilation system • employs double supply and exhaust plenums connected to central fan rooms equipped with axial fans; in normal operation fresh air is introduced and exhausted via openings in double ventilation plenums. www.francobontempi.org Str o N GER 28

29 www.francobontempi.org Str o N GER 29

30 www.francobontempi.org Str o N GER 30

31 www.francobontempi.org Str o N GER 31

32 Attachments • Dispersion stack and fan room combined with longitudinal ventilation: may be required in order to reduce adverse effect on environment of discharge of polluted air from tunnel, where buildings are located in proximity (< 100m) to tunnel leaving portal. www.francobontempi.org Str o N GER 32

33 www.francobontempi.org Str o N GER 33

34 Ventilation unit Air extraction Ventilation unit Supply of fresh air www.francobontempi.org Str o N GER 34

35 www.francobontempi.org Str o N GER 35

36 COMPLESSITA’ Approccio prestazionale Modellazione Sicurezza 2 www.francobontempi.org Str o N GER 36

37 LOOSEcouplingsTIGHT LINEAR interactions NONLINEAR System Complexity (Perrow) www.francobontempi.org Str o N GER 37

38 APPROCCIO PRESTAZIONALE www.francobontempi.org Str o N GER 38

39 www.francobontempi.org Str o N GER 39

40 Prescrittivo (1) APPROCCIO PRESCRITTIVO 1) BASI DEL PROGETTO, 2) LIVELLI DI SCUREZZA, 3) PRESTAZIONI ATTESE NON ESPLICITATI 1) REGOLE DI CALCOLO E 2) COMPONENTI MATERIALI SPECIFICATI E DETTAGLIATI QUALITA' ED AFFIDABILITA' STRUTTURALI ASSICURATI IN MODO INDIRETTO GARANZIA DIRETTA DELLE PRESTAZIONI E DELLA SICUREZZA STRUTURALI INSIEME DI STRUMENTI LOGICI E MATERIALI #3 INSIEME DI STRUMENTI LOGICI E MATERIALI #1 INSIEME DI STRUMENTI LOGICI E MATERIALI #2 OBIETTIVI PRESTAZIONALI E LIVELLI DI SICUREZZA ESPLICITATI APPROCCIO PRESTAZIONALE www.francobontempi.org Str o N GER 40

41 RequisitiRequisiti Elementi CostituentiElementi Costituenti Elementi CostituentiElementi Costituenti Elementi CostituentiElementi Costituenti RequisitiRequisiti Elementi CostituentiElementi Costituenti Elementi CostituentiElementi Costituenti prescrittivo prestazionale RequisitiRequisiti Elementi CostituentiElementi Costituenti RequisitiRequisiti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti RequisitiRequisiti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti prescrittivo prestazionale Prescrittivo (2) www.francobontempi.org Str o N GER 41

42 Prestazionale (1) APPROCCIO PRESCRITTIVO 1) BASI DEL PROGETTO, 2) LIVELLI DI SCUREZZA, 3) PRESTAZIONI ATTESE NON ESPLICITATI 1) REGOLE DI CALCOLO E 2) COMPONENTI MATERIALI SPECIFICATI E DETTAGLIATI QUALITA' ED AFFIDABILITA' STRUTTURALI ASSICURATI IN MODO INDIRETTO GARANZIA DIRETTA DELLE PRESTAZIONI E DELLA SICUREZZA STRUTURALI INSIEME DI STRUMENTI LOGICI E MATERIALI #3 INSIEME DI STRUMENTI LOGICI E MATERIALI #1 INSIEME DI STRUMENTI LOGICI E MATERIALI #2 OBIETTIVI PRESTAZIONALI E LIVELLI DI SICUREZZA ESPLICITATI APPROCCIO PRESTAZIONALE www.francobontempi.org Str o N GER 42

43 Prestazionale (2)RequisitiRequisiti Elementi CostituentiElementi Costituenti Elementi CostituentiElementi Costituenti Elementi CostituentiElementi Costituenti RequisitiRequisiti Elementi CostituentiElementi Costituenti Elementi CostituentiElementi Costituenti prescrittivo prestazionale RequisitiRequisiti Elementi CostituentiElementi Costituenti RequisitiRequisiti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti RequisitiRequisiti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti Elementi CostituentiElementi CostituentiElementi CostituentiElementi Costituenti prescrittivo prestazionale www.francobontempi.org Str o N GER 43

44 START END DEFINIZIONE E DISANIMA DEGLI OBIETTIVI INDIVIDUAZIONE DELLE SOLUZIONI ATTE A RAGGIUNGERE GLI OBIETTIVI ATTIVITA' DI MODELLAZIONE E MISURA GIUDIZIO DELLE PRESTAZIONI RISULTANTI No Yes www.francobontempi.org Str o N GER 44

45 www.francobontempi.org Str o N GER 45

46 www.francobontempi.org Str o N GER 46

47 MODELLI NUMERICI MODELLI FISICI RISPETTO DI PRESCRIZIONI livello 1 OBIETTIVI livello 3 DEFINIZIONE DELLA SOLUZIONE STRUTTURALE livello 4 VERIFICA DELLE CAPACITA' PRESTAZIONALI LIMITI DELLA PERFORMANCE i-esima CRITERIO (QUANTITA') CHE MISURA LA PERFORMANCE i-esima DEFINIZIONE DELLA PERFORMANCE i-esima livello 2 ESPLICITAZIONE DEGLI OBIETTIVI ATTRAVERSO L'INDIVIDUAZIONE DI n PRESTAZIONI; ordinatamente, per ciascuna di esse, i =1,..n: ESITO NO SI' A C B www.francobontempi.org Str o N GER 47

48 MODELLI NUMERICI MODELLI FISICI RISPETTO DI PRESCRIZIONI livello 1 OBIETTIVI livello 3 DEFINIZIONE DELLA SOLUZIONE STRUTTURALE livello 4 VERIFICA DELLE CAPACITA' PRESTAZIONALI LIMITI DELLA PERFORMANCE i-esima CRITERIO (QUANTITA') CHE MISURA LA PERFORMANCE i-esima DEFINIZIONE DELLA PERFORMANCE i-esima livello 2 ESPLICITAZIONE DEGLI OBIETTIVI ATTRAVERSO L'INDIVIDUAZIONE DI n PRESTAZIONI; ordinatamente, per ciascuna di esse, i =1,..n: ESITO NO SI' A C B www.francobontempi.org Str o N GER 48

49 MODELLAZIONE www.francobontempi.org Str o N GER 49

5050 www.francobontempi.org Str o N GER 50

51 Analysis Strategy #1: Sensitivity governance of priorities www.francobontempi.org Str o N GER 51

52 Analysis Strategy #2: Bounding behavior governance www.francobontempi.org Str o N GER 52

53 Analysis Strategy #3: Redundancy Governance www.francobontempi.org Str o N GER 53

54 NUMERICAL MODELING www.francobontempi.org Str o N GER 54

55 Factors for Coupling MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) INFORMATION FLOW DIRECTION time tK www.francobontempi.org Str o N GER 55

56 Fully Coupled Scheme time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) www.francobontempi.org Str o N GER 56

57 Staggered Coupled Scheme time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) www.francobontempi.org Str o N GER 57

58 Temperature Driven Scheme time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) www.francobontempi.org Str o N GER 58

59 Scheme With No Memory time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) www.francobontempi.org Str o N GER 59

6060 www.francobontempi.org Str o N GER

6161 www.francobontempi.org Str o N GER

6262 www.francobontempi.org Str o N GER

6363 www.francobontempi.org Str o N GER

64 SICUREZZA www.francobontempi.org Str o N GER 64

65 ATTRIBUTES THREATS MEANS RELIABILITY FAILURE ERROR FAULT FAULT TOLERANT DESIGN FAULT DETECTION FAULT DIAGNOSIS FAULT MANAGING DEPENDABILITY of STRUCTURAL SYSTEMS AVAILABILITY SAFETY MAINTAINABILITY permanent interruption of a system ability to perform a required function under specified operating conditions the system is in an incorrect state: it may or may not cause failure it is a defect and represents a potential cause of error, active or dormant INTEGRITY ways to increase the dependability of a system An understanding of the things that can affect the dependability of a system A way to assess the dependability of a system the trustworthiness of a system which allows reliance to be justifiably placed on the service it delivers SECURITY High level / active performance Low level / passive performance Visions, I., Laprie, J.C., Randell, B., Dependability and its threats: a taxonomy, 18th IFIP World Computer Congress, Toulouse (France) 2004. www.francobontempi.org Str o N GER 65

66 ATTRIBUTE S RELIABILITY AVAILABILITY SAFETY MAINTAINABILITY INTEGRITY SECURITY FAILURE ERROR FAULT permanent interruption of a system ability to perform a required function under specified operating conditions the system is in an incorrect state: it may or may not cause failure it is a defect and represents a potential cause of error, active or dormant THREATS Structural Robustness (1) 66 www.francobontempi.org Str o N GER 66

67 Structural Robustness (2) • Capacity of a construction to show a regular decrease of its structural quality due to negative causes. It implies: a) some smoothness of the decrease of structural performance due to negative events (intensive feature); b) some limited spatial spread of the rupture (extensive feature). www.francobontempi.org Str o N GER 67

68 Levels of Structural Crisis UsualULS&SLS VerificationFormat Structural Robustness Assessment 1st level: Material Point 2nd level: Element Section 3rd level: Structural Element 4th level: Structural System www.francobontempi.org Str o N GER 68

69 Bad vs Good Collapses STRUCTURE & LOADS Collapse Mechanism NO SWAY “IMPLOSION” OF THE STRUCTURE “EXPLOSION” OF THE STRUCTURE is a process in which objects are destroyed by collapsing on themselves is a process NOT CONFINED SWAY www.francobontempi.org Str o N GER 69

70 Design Strategy #1: Continuity www.francobontempi.org Str o N GER 70

71 Design Strategy #2: Segmentation www.francobontempi.org Str o N GER 71

72 Esempio di valutazione di roubustezza strutturale www.francobontempi.org Str o N GER

73 73 Esempio: edificio alto www.francobontempi.org Str o N GER

74 Analisi di un componente tipico D0 www.francobontempi.org Str o N GER

75D1 D2 Scenari (1-2) www.francobontempi.org Str o N GER

76D3 D4 Scenari (3-4)www.francobontempi.org Str o N GER

77 Modalità di collasso (1-2) D1 D2 www.francobontempi.org Str o N GER

78 Modalità di collasso (3-4) D3 D4 www.francobontempi.org Str o N GER

79 Sintesi dei risultati: elemento critico 0 4 Lo scenario D4 è quello più cattivo: l’elemento strutturale critico individuato è la colonna più esterna! www.francobontempi.org Str o N GER

80 Modellazione edificio alto www.francobontempi.org Str o N GER

81 www.francobontempi.org Str o N GER

82 Scenario 1 (1 asta eliminata) Scenario 2 (3 aste eliminate) Scenario 3 (5 aste eliminate) Scenario 4 (7 aste eliminate) Scenari di danneggiamentowww.francobontempi.org Str o N GER

83 Collasso secondo scenario 1www.francobontempi.org Str o N GER

84 Collasso secondo scenario 2www.francobontempi.org Str o N GER

85 Collasso secondo scenario 3www.francobontempi.org Str o N GER

86 Collasso secondo scenario 4www.francobontempi.org Str o N GER

87 Moltiplicatore Ultimo e sua variazione 4,05 3,57 3,19 2,64 2,40 0,48 0,86 1,41 1,65 0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 4,00 4,50 D0 D1 D2 D3 D4 Scenario di danneggiamento u Delta F F Sintesi dei risultati Δ u u www.francobontempi.org Str o N GER

88 AZIONE Natura dell’azione incendio Carattere accidentale Carattere estensivo Carattere intensivo 3 www.francobontempi.org Str o N GER 88

89 Aspetti caratteristici dell’incendio • Carattere estensivo (diffusione nello spazio): 1.wildfire 2.urbanfire 3.all’esterno di una costruzione 4.all’interno di una costruzione • Carattere intensivo (andamento nel tempo). • Natura accidentale. www.francobontempi.org Str o N GER 89

90 Carattere intensivo www.francobontempi.org Str o N GER 90

91 ISO 13387: Example of Design Fire www.francobontempi.org Str o N GER 91

92 Andamento nel tempo potenza termica www.francobontempi.org Str o N GER 92

93 www.francobontempi.org Str o N GER 93

94 flashover STRATEGIE ATTIVE (approccio sistemico) STRATEGIE PASSIVE (approccio strutturale) Tempo t TemperaturaT(t) andamento di T(t) a seguito del successo delle strategie attive flashover STRATEGIE ATTIVE (approccio sistemico) STRATEGIE PASSIVE (approccio strutturale) Tempo t TemperaturaT(t) andamento di T(t) a seguito del successo delle strategie attive Strategie www.francobontempi.org Str o N GER 94

95 F L A S H O V E R passive  Create fire compartments  Prevent damage in the elements  Prevent loss of functionality in the building active  Detection measures (smoke, heat, flame detectors)  Suppression measures (sprinklers, fire extinguisher, standpipes, firemen)  Smoke and heat evacuation system prevention protection robustness  Limit ignition sources  Limit hazardous human behavior  Emergency procedure and evacuation  Prevent the propagation of collapse, once local damages occurred (e.g. redundancy) Fire Safety Strategies systemic structural www.francobontempi.org Str o N GER 95

96 active protection passive protection no failures doesn’t trigger Y N Y N spreads extinguishes damages Y N robustness no collapse collapse Y N triggers prevention1 42 3 Fire Safety Strategies www.francobontempi.org Str o N GER 96

97 www.francobontempi.org Str o N GER 97

98 www.francobontempi.org Str o N GER 98

99 SnakeFighter www.francobontempi.org Str o N GER 99

100 Carattere estensivo www.francobontempi.org Str o N GER 100

101 The Great Fire of Chicago, Oct. 7-10, 1871 www.francobontempi.org Str o N GER 101

102 www.francobontempi.org Str o N GER 102

103 www.francobontempi.org Str o N GER 103

104 www.francobontempi.org Str o N GER 104

105 www.francobontempi.org Str o N GER 105

106 Windsor Hotel Madrid www.francobontempi.org Str o N GER 106

107 Natura accidentale www.francobontempi.org Str o N GER 107

108 Situazioni HPLC High Probability Low Consequences www.francobontempi.org Str o N GER 108

109 LPHC events Low Probability High Consequences www.francobontempi.org Str o N GER 109

110 HPLC High Probability Low Consequences LPHC Low Probability High Consequences release of energy SMALL LARGE numbers of breakdown SMALL LARGE people involved FEW MANY nonlinearity WEAK STRONG interactions WEAK STRONG uncertainty WEAK STRONG decomposability HIGH LOW course predictability HIGH LOW HPLC vs LPHC events 110

111 Approcci di analisi HPLC Eventi Frequenti con Conseguenze Limitate LPHC Eventi Rari con Conseguenze Elevate Complessità: Aspetti non lineari e Meccanismi di interazioni Impostazione del problema: DETERMINISTICA STOCASTICA ANALISI QUALITATIVA DETERMINISTICA ANALISI QUANTITATIVA PROBABILISTICA ANALISI PRAGMATICA CON SCENARI www.francobontempi.org Str o N GER 111

112 CAPITOLO 2: SICUREZZA E PRESTAZONI ATTESE QUALITA’ CAPITOLO 3: AZIONI AMBIENTALI CAPITOLO 6: AZIONI ANTROPICHE CAPITOLO 4: AZIONI ACCIDENTALI DOMANDA CAPITOLO 5: NORME SULLE COSTRUZIONI CAPITOLO 7: NORME PER LE OPERE INTERAGENTI CON I TERRENI E CON LE ROCCE, PER GLI INTERVENTI NEI TERRENI E PER LA SICUREZZA DEI PENDII CAPITOLO 9: NORME SULLE COSTRUZIONI ESISTENTI PRODOTTO CAPITOLO 11: MATERIALI E PRODOTTI PER USO STRUTTURALE CAPITOLO 10: NORME PER LA REDAZIONI DEI PROGETTI ESECUTIVI CAPITOLO 8: COLLAUDO STATICO CONTROLLO Italian Code for Constructions D.M. 14 settembre 2005 www.francobontempi.org Str o N GER 112

113 Il Progettista, a seguito della classificazione e della caratterizzazione delle azioni, deve individuare le possibili situazioni contingenti in cui le azioni possono cimentare l’opera stessa. A tal fine, è definito:  lo scenario: un insieme organizzato e realistico di situazioni in cui l’opera potrà trovarsi durante la vita utile di progetto;  lo scenario di carico: un insieme organizzato e realistico di azioni che cimentano la struttura;  lo scenario di contingenza: l’identificazione di uno stato plausibile e coerente per l’opera, in cui un insieme di azioni (scenario di carico) è applicato su una configurazione strutturale. Per ciascuno stato limite considerato devono essere individuati scenari di carico (ovvero insiemi organizzati e coerenti nello spazio e nel tempo di azioni) che rappresentino le combinazioni delle azioni realisticamente possibili e verosimilmente più restrittive. Scenari (D.M. 14 settembre 2005) www.francobontempi.org Str o N GER 113

114 Determine geometry, construction and use of the building Establish maximum likely fuel loads Estimate maximum likely number of occupants and their locations Assume certain fire protection features Carry out fire engineering analysis Acceptable performance Accept design Modify fire protection features Establish performance requirements No Yes Buchanan,2002 www.francobontempi.org Str o N GER 114

115 www.francobontempi.org Str o N GER 115

116 SVILUPPO Dinamica degli incendi in galleria Effetti della ventilazione 4 www.francobontempi.org Str o N GER 116

117 FIRE DYNAMICS IN TUNNELS www.francobontempi.org Str o N GER 117

118 Tunnel Fires vs Compartment Fires (0) 118

119 Tunnel Fires Progression (1) www.francobontempi.org Str o N GER 119

120 www.francobontempi.org Str o N GER 120

121 www.francobontempi.org Str o N GER 121

122 Tunnel Fires Progression (2) www.francobontempi.org Str o N GER 122

123 Effects of ventilation www.francobontempi.org Str o N GER 123

124 Temperature development www.francobontempi.org Str o N GER 124

125 Smoke development • A smoke layer may be created in tunnels at the early stages of a fire with essentially no longitudinal ventilation. However, the smoke layer will gradually descend further from the fire. • If the tunnel is very long, the smoke layer may descend to the tunnel surface at a specific distance from the fire depending on the fire size, tunnel type, and the perimeter and height of the tunnel cross section. • When the longitudinal ventilation is gradually increased, the stratified layer will gradually dissolve. • A backlayering of smoke is created on the upstream side of the fire. • Downstream from the fire there is a degree of stratification of the smoke that is governed by the heat losses to the surrounding walls and by the turbulent mixing between the buoyant smoke layers and the normally opposite moving cold layer. www.francobontempi.org Str o N GER 125

126 Backlayering www.francobontempi.org Str o N GER 126

127 www.francobontempi.org Str o N GER 127

128 Maximum gas temperatures in the ceiling area of the tunnel during tests with road vehicles www.francobontempi.org Str o N GER 128

129 Maximum gas temperatures in the ceiling area of the tunnel during tests with road vehicles www.francobontempi.org Str o N GER 129

130 Maximum gas temperatures in the cross section of the tunnel during tests with road vehicles www.francobontempi.org Str o N GER 130

131 EMERGENCY VENTILATION www.francobontempi.org Str o N GER 131

132 Smoke stratification www.francobontempi.org Str o N GER 132

133 Natural smoke venting • It can be sufficient in short, level tunnels where smoke stratification allows for escape in clear/tenable conditions. www.francobontempi.org Str o N GER 133

134 Smoke filling long tunnel www.francobontempi.org Str o N GER 134

135 Emergency ventilation with longitudinal system • It can be employed in unidirectional, medium length tunnels, with free flowing traffic conditions. Smoke is mechanically exhausted in direction of traffic circulation, clear tenable conditions for escape are obtained on upstream side of fire. www.francobontempi.org Str o N GER 135

136 www.francobontempi.org Str o N GER 136

137 www.francobontempi.org Str o N GER 137

138 k size factor for HGV fire www.francobontempi.org Str o N GER 138

139 k size factor for small pool fire www.francobontempi.org Str o N GER 139

140 Emergency ventilation with semi- transverse “point extraction” system • Smoke is mechanically exhausted from single ceiling opening (reverse mode) leaving clear tenable escape conditions on both sides of fire. www.francobontempi.org Str o N GER 140

141 www.francobontempi.org Str o N GER 141

142 Observation: goal • The purpose of controlling the spread of smoke is to keep people as long as possible in a smoke-free environment. • This means that the smoke stratification must be kept intact, leaving a more or less clear and breathable air underneath the smoke layer. • The stratified smoke is taken out of the tunnel through exhaust openings located in the ceiling or at the top of the sidewalls. www.francobontempi.org Str o N GER 142

143 Observation: longitudinal velocity • With practically zero longitudinal air velocity, the smoke layer expands to both sides of the fire. The smoke spreads in a stratified way for up to 10 min. • After this initial phase, smoke begins to mix over the entire cross section, unless by this time the extraction is in full operation. • The longitudinal velocity of the tunnel air must be below 2 m/s in the vicinity of the fire incidence zone. With higher velocities, the vertical turbulence in the shear layer between smoke and fresh air quickly cools the upper layer and the smoke then mixes over the entire cross section. www.francobontempi.org Str o N GER 143

144 Observations: turbulence • With an air velocity of around 2 m/s, most of the smoke of a medium-size fire spreads to one side of the fire (limited backlayering) and starts mixing over the whole cross section at a distance of 400 to 600 m downstream of the fire site. This mixing over the cross section can also be prevented if the smoke extraction is activated early enough. • Vehicles standing in the longitudinal air flow increase strongly the vertical turbulence and encourage the vertical mixing of the smoke. www.francobontempi.org Str o N GER 144

145 Observation: fresh air • In a transverse ventilation system, the fresh air jets entering the tunnel at the floor level induce a rotation of the longitudinal airflow, which tends to bring the smoke layer down to the road. • No fresh air is to be injected from the ceiling in a zone with smoke because this increases the amount of smoke and tends to suppress the stratification. www.francobontempi.org Str o N GER 145

146 Observation: smoke extraction • In reversible semi-transverse ventilation with the duct at the ceiling, the fresh air is added through ceiling openings in normal ventilation operation. • If a fire occurs, as long as fresh air is supplied through ceiling openings, the smoke quantity increases by this amount and strong jets tend to bring the smoke down to the road surface. The conversion of the duct from supply to extraction must be done as quickly as possible. www.francobontempi.org Str o N GER 146

147 Observation: traffic conditions • For a tunnel with one-way traffic, designed for queues (an urban area), the ventilation design must take into consideration that cars can likely stand to both sides of the fire because of the traffic. In urban areas it is usual to find stop-and- go traffic situations. • For a tunnel with two-way traffic, where the vehicles run in both directions, it must be taken into consideration that in the event of a fire vehicles will generally be trapped on both sides of the fire. www.francobontempi.org Str o N GER 147

148 Strategies www.francobontempi.org Str o N GER 148

149 Smoke extraction • Continuous extraction into a return air duct is needed to remove a stratified smoke layer out of the tunnel without disturbing the stratification. • The traditional way to extract smoke is to use small ceiling openings distributed at short intervals throughout the tunnel. • Another efficient way to remove smoke quickly out of the traffic space is to install large openings with remotely controlled dampers. They are normally in an open position where equal extraction is taking place over the whole tunnel length. www.francobontempi.org Str o N GER 149

150 Tunnel with a single-point extraction system The usual way to control the longitudinal velocity is to provide several independent ventilation sections. When a tunnel has several ventilation sections, a certain longitudinal velocity in the fire section can be maintained by a suitable operation of the individual air ducts. By reversing the fan operation in the exhaust air duct, this duct can be used to supply air and vice versa. www.francobontempi.org Str o N GER 150

151 FIRE MODELING www.francobontempi.org Str o N GER 151

152 www.francobontempi.org Str o N GER 152

153 www.francobontempi.org Str o N GER 153 Levels

154 1D www.francobontempi.org Str o N GER 154

155 1D www.francobontempi.org Str o N GER 155

156 2D (zone model) www.francobontempi.org Str o N GER 156

157 2D (zone model) www.francobontempi.org Str o N GER 157

158 www.francobontempi.org Str o N GER 158

159 FDS Simulation 3D (ventilation) www.francobontempi.org Str o N GER 159

160 FDS Simulation 3D (fire) www.francobontempi.org Str o N GER 160

161 3D (traffic) www.francobontempi.org Str o N GER 161

162 www.francobontempi.org Str o N GER 162

163 Multiscale www.francobontempi.org Str o N GER 163

164 Multiscale (ventilation) www.francobontempi.org Str o N GER 164

165 Multiscale (fire) www.francobontempi.org Str o N GER 165

166 Multiscale (structural) www.francobontempi.org Str o N GER 166

167 Multiscale (structural) www.francobontempi.org Str o N GER 167

168 PROGETTO Basis Failure path Risk 5 www.francobontempi.org Str o N GER 168

169 BASIS www.francobontempi.org Str o N GER 169

170 Design Process - ISO 13387 A. Design constraints and possibilities (blue), B. Action definition and development (red), C. Passive system and active response (yellow), D. Safety and performance (purple). 3/22/2011 www.francobontempi.org Str o N GER 170

171 SS0a PRESCRIBED DESIGN PARAMETERS SS0b ESTIMATED DESIGN PARAMETERS SS1 initiation and development of fire and fire efluent SS2 movement of fire effluent SS3 structural response and fire spread beyond enclosure of origin SS4 detection, activitation and suppression SS5 life safety: occupant behavior, location and condition SS6 property loss SS7 business interruption SS8 contamination of environment SS9 destruction of heritage (0) DESIGN CONSTRAINTS AND POSSIBILITIES (1+2) ACTION DEFINITION AND DEVELOPMENT (3+4) SYSTEM PASSIVE AND ACTIVE RESPONSE BUSOFINFORMATION RESULTS DESIGN ACTION SAFETY&PERFORMANCE FSEwww.francobontempi.org Str o N GER 171 DESIGN RESPONSE

172 STRUCTURAL CONCEPTION STRUCTURAL TOPOLOGY & GEOMETRY threats No Yes threats STRUCTURAL MATERIAL & PARTS No Yespassive structural characteristics threats FIRE DETECTION & SUPPRESSION No Yes active structural characteristics threats ORGANIZATION & FIREFIGHTERS No Yes threats MAINTENANCE & USE No Yes threats No alive structural characteristics Yes STRUCTURAL SYSTEM CHARACTERISTICS STRUCTURAL SYSTEM WEAKNESS www.francobontempi.org Str o N GER 172

173 STRUCTURAL CONCEPTION STRUCTURAL TOPOLOGY & GEOMETRY threats No Yes threats STRUCTURAL MATERIAL & PARTS No Yespassive structural characteristics threats No Yes STRUCTURAL CONCEPTION STRUCTURAL TOPOLOGY & GEOMETRY threats No Yes threats STRUCTURAL MATERIAL & PARTS No Yespassive structural characteristics threats FIRE DETECTION & SUPPRESSION No Yes active structural characteristics threats ORGANIZATION & FIREFIGHTERS No Yes threats MAINTENANCE & USE No Yes threats No alive structural characteristics Yes www.francobontempi.org Str o N GER 173

174 FIRE DETECTION & SUPPRESSION No active structural characteristics threats ORGANIZATION & FIREFIGHTERS No Yes threats MAINTENANCE & USE No Yes threats No alive structural characteristics Yes STRUCTURAL CONCEPTION STRUCTURAL TOPOLOGY & GEOMETRY threats No Yes threats STRUCTURAL MATERIAL & PARTS No Yespassive structural characteristics threats FIRE DETECTION & SUPPRESSION No Yes active structural characteristics threats ORGANIZATION & FIREFIGHTERS No Yes threats MAINTENANCE & USE No Yes threats No alive structural characteristics Yes 3/22/2011 174 PROGETTAZIONE STRUTTURALE ANTINCENDIO www.francobontempi.org Str o N GER 174

175 Fire fighting timeline www.francobontempi.org Str o N GER 175

176 STRUCTURAL CONCEPTION STRUCTURAL TOPOLOGY & GEOMETRY STRUCTURAL MATERIAL & PARTS FIRE DETECTION & SUPPRESSION ORGANIZATION & FIREFIGHTERS MAINTENANCE & USE CRISIS www.francobontempi.org Str o N GER 176

177IN-DEPTH DEFENCE FAILURE PATH www.francobontempi.org Str o N GER 177

178 Controlled vs. Uncontrolled Events www.francobontempi.org Str o N GER 178

179 Controlled vs. Uncontrolled Events www.francobontempi.org Str o N GER 179

180 Fire safety concepts tree (NFPA) 1 2 3 4 5 6 7 8 9 Buchanan,2002 Strategie per la gestione dell'incendio 1 Prevenzione 2 Gestione dell'evento 3 Gestione dell'incendio 4 Gestione delle persone e dei beni 15 Difesa sul posto 16 Spostamento 17 Disposibilità delle vie di fuga 18 Far avvenire il deflusso 19 Controllo della quantità di combustibile 5 Soppressione dell'incendio 10 Controllo dell'incendio attraverso il progetto 13 Automatica 11 Manuale 12 Controllo dei materiali presenti 6 Controllo del movimento dell'incendio 7 Resistenza e stabilità strutturale 14 Contenimento 9 Ventilazione 8 www.francobontempi.org Str o N GER 180

181 1 2 3 4 5 6 7 8 9 Strategie per la gestione dell'incendio 1 Prevenzione 2 Gestione dell'evento 3 Gestione dell'incendio 4 Gestione delle persone e dei beni 15 Difesa sul posto 16 Spostamento 17 Disposibilità delle vie di fuga 18 Far avvenire il deflusso 19 Controllo della quantità di combustibile 5 Soppressione dell'incendio 10 Controllo dell'incendio attraverso il progetto 13 Automatica 11 Manuale 12 Controllo dei materiali presenti 6 Controllo del movimento dell'incendio 7 Resistenza e stabilità strutturale 14 Contenimento 9 Ventilazione 8 Fire safety concepts tree (NFPA) Buchanan,2002 www.francobontempi.org Str o N GER 181

182 Basis of tunnel fire safety design • The first priority identified in the literature for fire design of all tunnels is to ensure: 1. Prevention of critical events that may endanger human life, the environment, and the tunnel structure and installations. 2. Self-rescue of people present in the tunnel at time of the fire. 3. Effective action by the rescue forces. 4. Protection of the environment. 5. Limitation of the material and structural damage. • Furthermore, part of the objective is to reduce the consequences and minimize the economic loss caused by fires. www.francobontempi.org Str o N GER 182

183 www.francobontempi.org Str o N GER 183

184 RISK CONCERN www.francobontempi.org Str o N GER 184

185 Risk treatment Option 1 : RISK AVOIDANCE Option 2 : RISK REDUCTION Option 3 : RISK TRANSFER Option 4 : RISK ACCEPTANCE START STOP No No No Yes Yes Yes No 100 % 50 % 50 % 30 % 20 % 25 % 5 % www.francobontempi.org Str o N GER 185

186 Option 1 Risk avoidance, which usually means not proceeding to continue with the system; this is not always a feasible option, but may be the only course of action if the hazard or their probability of occurrence or both are particularly serious; Option 2 Risk reduction, either through (a) reducing the probability of occurrence of some events, or (b) through reduction in the severity of the consequences, such as downsizing the system, or (c) putting in place control measures; Option 3 Risk transfer, where insurance or other financial mechanisms can be put in place to share or completely transfer the financial risk to other parties; this is not a feasible option where the primary consequences are not financial; Option 4 Risk acceptance, even when it exceeds the criteria, but perhaps only for a limited time until other measures can be taken. www.francobontempi.org Str o N GER 186

187 Quantitative Risk Analysis Luur,2002 www.francobontempi.org Str o N GER 187

188 Risk Analysis, Assessment, Management (IEC 1995) www.francobontempi.org Str o N GER 188

189 RISK CONCERNS DEFINE CONTEXT (social, individual, political, organizational, technological) RSK ANALYSIS (for the system are defined organization, scenarios, and consequences of occurences) RISK ASSESSMENT (compare risks against criteria) RISK TREATMENT option 1 - avoidance option 2 - reduction option 3 - transfer option 4 - acceptance MONITOR AND REVIEW RISK MANAGEMENT RISK ANALYSIS RISK ASSESSMENT www.francobontempi.org Str o N GER 189

190 www.francobontempi.org Str o N GER 190

191 SCENARIOS DEFINE SYSTEM (the system is usually decomposed into a number of smaller subsystems and/or components) HAZARD SCENARIO ANALYSIS (what can go wrong? how can it happen? waht controls exist?) ESTIMATE CONSEQUENCES (magnitude) ESTIMATE PROBABILITIES (of occurrences) DEFINE RISK SCENARIOS SENSITIVITY ANALYSIS RISK ANALYSIS FIRE EVENT www.francobontempi.org Str o N GER 191

192 ISHIKAWA DIAGRAMwww.francobontempi.org Str o N GER 192

193 www.francobontempi.org Str o N GER 193

194 EVENT TREE Triggering event Fire ignition 1. Fire extinguished by personnel 2. Intrusion of fire fighters Arson Explosion Short circuit Cigarette fire YES (P1) NO (1-P1) YES (P2) NO (1-P2) Scenario Other A1 A2 A3 A4 A5 3. Fire suppression YES (P3) NO (1-P3) YES (P3) NO (1-P3) Fire location AREA A (PA) YES (P1) NO (1-P1) YES (P2) NO (1-P2) B1 B2 B3 B4 B5 YES (P3) NO (1-P3) YES (P3) NO (1-P3) AREA B (PB) YES (P1) NO (1-P1) YES (P2) NO (1-P2) C1 C2 C3 C4 C5 YES (P3) NO (1-P3) YES (P3) NO (1-P3) AREA C (PC) www.francobontempi.org Str o N GER 194 PREPARAZIONE EVOLUZIONE

195 DEFINE SYSTEM (the system is usually decomposed into a number of smaller subsystems and/or components) HAZARD SCENARIO ANALYSIS (what can go wrong? how can it happen? waht controls exist?) ESTIMATE CONSEQUENCES (magnitude) ESTIMATE PROBABILITIES (of occurrences) DEFINE RISK SCENARIOS SENSITIVITY ANALYSIS RISK ANALYSIS NUMERICAL MODELING SIMULATIONSwww.francobontempi.org Str o N GER 195

196 www.francobontempi.org Str o N GER 196

197 www.francobontempi.org Str o N GER 197

198 www.francobontempi.org Str o N GER 198

199 F (frequency) – N (number of fatalities) curve • An F–N curve is an alternative way of describing the risk associated with loss of lives. • An F–N curve shows the frequency (i.e. the expected number) of accident events with at least N fatalities, where the axes normally are logarithmic. • The F–N curve describes risk related to large- scale accidents, and is thus especially suited for characterizing societal risk. www.francobontempi.org Str o N GER 199

200 FN-curves UK Road Rail Aviation Transport, 67-01 www.francobontempi.org Str o N GER 200

201 Persson, M. Quantitative Risk Analysis Procedure for the Fire Evacuation of a Road Tunnel - An Illustrative Example. Lund, 2002 www.francobontempi.org Str o N GER 201

202 Risk acceptance – ALARP (1) RISK MAGNITUDE INTOLERABLE REGION As Low As Reasonably Practicable BROADLY ACCEPTABLE REGION Risk cannot be justified in any circumstances Tolerable only if risk reduction is impracticable or if its cost is greatly disproportionate to the improvement gained Tolerable if cost of reduction would exceed the improvements gained Necessary to maintain assurance that the risk remains at this level As Low As Reasonably Achievable RISK MAGNITUDE INTOLERABLE REGION As Low As Reasonably Practicable BROADLY ACCEPTABLE REGION Risk cannot be justified in any circumstances Tolerable only if risk reduction is impracticable or if its cost is greatly disproportionate to the improvement gained Tolerable if cost of reduction would exceed the improvements gained Necessary to maintain assurance that the risk remains at this level As Low As Reasonably Achievable www.francobontempi.org Str o N GER 202

203 Risk acceptance – ALARP (2) www.francobontempi.org Str o N GER 203

204 www.francobontempi.org Str o N GER 204

205 Risk reduction by design www.francobontempi.org Str o N GER 205

206 Monetary values – cost of human life (!) What is the maximum amount the society (or the decisionmaker) is willing to pay to reduce the expected number of fatalities by 1? Typical numbers for the value of a statistical life used in cost-benefit analysis are 1–10 million euros. www.francobontempi.org Str o N GER 206

207 RESISTENZA 6 www.francobontempi.org Str o N GER 207

208 The burnt out interior of the Mont Blanc Tunnel www.francobontempi.org Str o N GER 208

209 Curve temperatura - tempo www.francobontempi.org Str o N GER 209

210 Types of fire exposure for tunnel analysis 0 200 400 600 800 1000 1200 1400 0 30 60 90 120 150 180 Temperature(°C) Time (min.) Cellulosic Hydrocarbon Hydrocarbon modified RABT-ZTV train RABT-ZTV car RWS www.francobontempi.org Str o N GER 210

211 Cellulosic curve • Defined in various national standards, e.g. ISO 834, BS 476: part 20, DIN 4102, AS 1530 etc. • This curve is the lowest used in normal practice. • It is based on the burning rate of the materials found in general building materials. www.francobontempi.org Str o N GER 211

212 Hydrocarbon (HC) curve • Although the cellulosic curve has been in use for many years, it soon became apparent that the burning rates for certain materials e.g. petrol gas, chemicals etc, were well in excess of the rate at which for instance, timber would burn. • The hydrocarbon curve is applicable where small petroleum fires might occur, i.e. car fuel tanks, petrol or oil tankers, certain chemical tankers etc. www.francobontempi.org Str o N GER 212

213 Hydrocarbon mod. (HCM) curve • Increased version of the hydrocarbon curve, prescribed by the French regulations. • The maximum temperature of the HCM curve is 1300ºC instead of the 1100ºC, standard HC curve. • However, the temperature gradient in the first few minutes of the HCM fire is as severe as all hydrocarbon based fires possibly causing a temperature shock to the surrounding concrete structure and concrete spalling as a result of it. www.francobontempi.org Str o N GER 213

214 RABT ZTV curves • The RABT curve was developed in Germany as a result of a series of test programs such as the EUREKA project. In the RABT curve, the temperature rise is very rapid up to 1200°C within 5 minutes. • The failure criteria for specimens exposed to the RABT-ZTV time-temperature curve is that the temperature of the reinforcement should not exceed 300°C. There is no requirement for a maximum interface temperature. RABT-ZTV (train) Time (minutes) T (°C) 0 15 5 1200 60 1200 170 15 RABT-ZTV (car) Time (minutes) T (°C) 0 15 5 1200 30 1200 140 15 www.francobontempi.org Str o N GER 214

215 RWS (Rijkswaterstaat) curve • The RWS curve was developed by the Ministry of Transport in the Netherlands. This curve is based on the assumption that in a worst case scenario, a 50 m³ fuel, oil or petrol, tanker fire with a fire load of 300MW could occur, lasting up to 120 minutes. • The failure criteria for specimens is that the temperature of the interface between the concrete and the fire protective lining should not exceed 380°C and the temperature on the reinforcement should not exceed 250°C. RWS, RijksWaterStaatTime (minutes) T (°C) 0 20 3 890 5 1140 10 1200 30 1300 60 1350 90 1300 120 1200 180 1200 www.francobontempi.org Str o N GER 215

216 www.francobontempi.org Str o N GER 216

217 www.francobontempi.org Str o N GER 217

218 Lönnermark, A. and Ingason, H., “Large Scale Fire Tests in the Runehamar tunnel – gas temperature and Radiation”, Proceedings of the International Seminar on Catastrophic Tunnel Fires, Borås, Sweden, 20-21 November 2003. www.francobontempi.org Str o N GER 218

219 www.francobontempi.org Str o N GER 219

220 www.francobontempi.org Str o N GER 220

221 Fire Scenario Recommendation www.francobontempi.org Str o N GER 221

222 Verifiche www.francobontempi.org Str o N GER 222

223 Mechanical Analysis • The mechanical analysis shall be performed for the same duration as used in the temperature analysis. • Verification of fire resistance should be in: – in the strength domain: Rfi,d,t ≥ Efi,requ,t (resistance at time t ≥ load effects at time t); – in the time domain: tfi,d ≥ tfi,requ (design value of time fire resistance ≥ time required) – In the temperature domain: Td ≤ Tcr (design value of the material temperature ≤ critical material temperature); www.francobontempi.org Str o N GER 223

224 Verification of fire resistance (3D) R = structural resistance T = temperature t = time T=T(t) R=R(t,T)=R(t,T(t))=R(t) www.francobontempi.org Str o N GER 224

225 Verification of fire resistance (R-safe) R = structural resistance T = temperature t = time Rfi,d,t Efi,requ,t www.francobontempi.org Str o N GER 225

226 Verification of fire resistance (R-fail) R = structural resistance T = temperature t = time Efi,requ,t Rfi,d,t Failure ! www.francobontempi.org Str o N GER 226

227 Verification of fire resistance (t) R = structural resistance T = temperature t = time Efi,requ,t Rfi,d,t Failure ! tfi,d ≥ tfi,requ www.francobontempi.org Str o N GER 227

228 Verification of fire resistance (T) R = structural resistance T = temperature t = time Efi,requ,t Rfi,d,t Failure ! Td ≤ Tcr www.francobontempi.org Str o N GER 228

229 Verification of fire resistance (T) R = structural resistance T = temperature t = time Efi,requ,t Rfi,d,t Failure ! Td ≤ Tcr www.francobontempi.org Str o N GER 229

230 Comportamenti termo-meccanici www.francobontempi.org Str o N GER

231 Trasformazione del calcestruzzo alle alte temperature www.francobontempi.org Str o N GER

232 Parametri per la relazione tensioni-deformazioni per il calcestruzzo ad elevate temperature. www.francobontempi.org Str o N GER

233 Calcestruzzo ad aggregato siliceo in condizioni di compressione uniassiale ad elevate temperature www.francobontempi.org Str o N GER

234 Variazione del coefficiente di riduzione della resistenza a compressione del calcestruzzo ad aggregato siliceo con la temperatura www.francobontempi.org Str o N GER

235 Relazioni tensioni-deformazioni per acciai da calcestruzzo armato ordinario laminati a caldo ad elevate temperature www.francobontempi.org Str o N GER

236 Parametri per la relazione tensioni-deformazioni per acciai da calcestruzzo armato ordinario laminati a caldo, a temperature elevate www.francobontempi.org Str o N GER

237 Spalling Spalling is an umbrella term, covering different damage phenomena that may occur to a concrete structure during fire. These phenomena are caused by different mechanisms: •Pore pressure rises due to evaporating water when the temperature rises; •Compression of the heated surface due to a thermal gradient in the cross section; •Internal cracking due to difference in thermal expansion between aggregate and cement paste; •Cracking due to difference in thermal expansion/deformation between concrete and reinforcement bars; •Strength loss due to chemical transitions during heating. www.francobontempi.org Str o N GER

238 • Explosive spalling occurs during the first 20-30 minutes of the standard cellulosic and hydrocarbon fire curves. • After the 2nd minute of a typical hydrocarbon exposure, spalling can occur in high strength concretes with polypropylene fibres and in concretes with high moisture content independent of the type of standard curve. Also, concretes with high moisture content can suffer spalling after the 3rd minute of exposure. • External temperature increments between 20-30ºC/min are typical in the occurrence of explosive spalling. • Temperature increments of more than 3ºC/min are enough for the occurrence of explosive spalling. • Concrete external layers can be released from concrete members when these reach temperatures between 250 - 420ºC; 375 - 425ºC. Spalling criteria (literature review) www.francobontempi.org Str o N GER

239 www.francobontempi.org Str o N GER 239

240 www.francobontempi.org Str o N GER 240

241 CONCLUSIONI Conceptual design Resilience 7 www.francobontempi.org Str o N GER 241

242 www.francobontempi.org Str o N GER

243 Conceptual Design www.francobontempi.org Str o N GER 243

244 Conceptual Design MULTI-HAZARD BLACK-SWAN DISASTER CHAIN www.francobontempi.org Str o N GER 244

245 Flow chart Tabella dotazioni Frejùs Forensic Engineering www.francobontempi.org Str o N GER

246246 Resilience www.francobontempi.org Str o N GER

247 Resilience • Resilience is defined as “the positive ability of a system or company to adapt itself to the consequences of a catastrophic failure caused by power outage, a fire, a bomb or similar event” or as "the ability of a system to cope with change". www.francobontempi.org Str o N GER 247

248 RESILIENCE www.francobontempi.org Str o N GER 248

249 www.francobontempi.org Str o N GER 249

250 ACKNOWLEDGEMENTS • Dr. Konstantinos GKOUMAS – Uniroma1 • Dr. Francesco PETRINI – Uniroma1 • Ing. Alessandra LO CANE – MIT • Dr. Filippo GENTILI – Coimbra (PT) • Mr. Tiziano BARONCELLI – Uniroma1 www.francobontempi.org Str o N GER 250

251 251 251 Str o N GER www.stronger2012.com 251

252 StroNGER S.r.l. Research Spin-off for Structures of the Next Generation: Energy Harvesting and Resilience Roma – Milano – Terni – Atene - Nice Cote Azur Sede operativa: Via Giacomo Peroni 442-444, Tecnopolo Tiburtino, 00131 Roma (ITALY) - info@stronger2012.com Str o N GER www.stronger2012.com 252

Add a comment

Related presentations

My Music Magazine Pitch

My Music Magazine Pitch

October 30, 2014

music mag pitch

Questionaire charts

Questionaire charts

November 4, 2014

bk

Final research

Final research

November 5, 2014

final research

Cersaie 2014

Cersaie 2014

October 30, 2014

allestimento in cartone per il Cersaie 2014 alberi in cartone scultura in cartone

Quarta turma do workshop de Infografia, ministrado por Beatriz Blanco e Marcos Sin...

Related pages

Convegno sulla Resistenza al Fuoco, Cosenza 6 Febbraio ...

... al Fuoco, Cosenza 6 Febbraio 2014, Bontempi. ... sulla Resistenza al Fuoco, Cosenza 6 Febbraio ... al corso sulla Resistenza al Fuoco ...
Read more

Convegno sulla Resistenza al Fuoco, Cosenza 6 Febbraio ...

Convegno sulla Resistenza al Fuoco, Cosenza 6 Febbraio 2014, Bontempi Giornata di Studio: LA RESISTENZA AL FUOCO DELLE STRUTTURE COSENZA, Universita' della ...
Read more

Il Pontino Nuovo n. 3 - 1/15 Febbraio 2014 by Il Pontino ...

Abbiamo chiesto l’apertura di “un tavolo” sulla crisi al nuovo ... prima con il convegno “Fratello Mare ... 6 febbraio 2014 ...
Read more

La Resistenza nella Provincia di Brescia | A.N.P.I. BRESCIA

Il convegno 2014: “Il potere ... (fucilati il 6 febbraio), Giacomo Perlasca e Mario Bettinzoli ... In seguito a segnalazioni sulla presenza di ribelli a ...
Read more

NICOLA AUGENTI - www.docenti.unina.it

nicola AUGENTI. Publications ... Indagine sperimentale sulla resistenza a taglio della muratura di tufo ... N. Augenti e al. Pubblicato su: Atti Convegno ...
Read more

Il Pontino Aprilia n. 3 - 1/15 Febbraio 2014 by Il Pontino ...

Giovedì 6 febbraio ... condizioni climatiche avverse, ha potuto contare sulla presenza di pochi allievi al ... Dal 21 Gennaio al 5 Febbraio 2014 anni 83 ...
Read more