advertisement

C14

80 %
20 %
advertisement
Information about C14
Entertainment

Published on February 18, 2008

Author: Rebecca

Source: authorstream.com

advertisement

Chapter 14:  Chapter 14 Chi Square - 2 Chi Square:  Chi Square Chi Square is a non-parametric statistic used to test the null hypothesis. It is used for nominal data. It is equivalent to the F test that we used for single factor and factorial analysis. … Chi Square:  … Chi Square Nominal data puts each participant in a category. Categories are best when mutually exclusive and exhaustive. This means that each and every participant fits in one and only one category Chi Square looks at frequencies in the categories. Expected frequencies and the null hypothesis ...:  Expected frequencies and the null hypothesis ... Chi Square compares the expected frequencies in categories to the observed frequencies in categories. “Expected frequencies”are the frequencies in each cell predicted by the null hypothesis … Expected frequencies and the null hypothesis ...:  … Expected frequencies and the null hypothesis ... The null hypothesis: H0: fo = fe There is no difference between the observed frequency and the frequency predicted (expected) by the null. The experimental hypothesis: H1: fo  fe The observed frequency differs significantly from the frequency predicted (expected) by the null. Calculating 2:  Calculating 2 Calculate the deviations of the observed from the expected. For each cell: Square the deviations. Divide the squared deviations by the expected value. Calculating 2:  Calculating 2 Add ‘em up. Then, look up 2 in Chi Square Table df = k - 1 (one sample 2) OR df= (Columns-1) * (Rows-1) (2 or more samples) Slide8:  df 1 2 3 4 5 6 7 8 .05 3.84 5.99 5.82 9.49 11.07 12.59 14.07 15.51 .01 6.63 9.21 11.34 13.28 15.09 16.81 18.48 20.09 df 9 10 11 12 13 14 15 16 .05 16.92 18.31 19.68 21.03 22.36 23.68 25.00 26.30 .01 21.67 23.21 24.72 26.22 27.69 29.14 30.58 32.00 df 17 18 19 20 21 22 23 24 .05 27.59 28.87 30.14 31.41 32.67 33.92 35.17 36.42 .01 33.41 34.81 36.19 37.57 38.93 40.29 41.64 42.98 df 25 26 27 28 29 30 .05 37.65 38.89 40.14 41.34 42.56 43.77 .01 44.31 45.64 46.96 48.28 49.59 50.89 Critical values of 2 Slide9:  df 1 2 3 4 5 6 7 8 .05 3.84 5.99 5.82 9.49 11.07 12.59 14.07 15.51 .01 6.63 9.21 11.34 13.28 15.09 16.81 18.48 20.09 df 9 10 11 12 13 14 15 16 .05 16.92 18.31 19.68 21.03 22.36 23.68 25.00 26.30 .01 21.67 23.21 24.72 26.22 27.69 29.14 30.58 32.00 df 17 18 19 20 21 22 23 24 .05 27.59 28.87 30.14 31.41 32.67 33.92 35.17 36.42 .01 33.41 34.81 36.19 37.57 38.93 40.29 41.64 42.98 df 25 26 27 28 29 30 .05 37.65 38.89 40.14 41.34 42.56 43.77 .01 44.31 45.64 46.96 48.28 49.59 50.89 Critical values of 2 Degrees of freedom Slide10:  df 1 2 3 4 5 6 7 8 .05 3.84 5.99 5.82 9.49 11.07 12.59 14.07 15.51 .01 6.63 9.21 11.34 13.28 15.09 16.81 18.48 20.09 df 9 10 11 12 13 14 15 16 .05 16.92 18.31 19.68 21.03 22.36 23.68 25.00 26.30 .01 21.67 23.21 24.72 26.22 27.69 29.14 30.58 32.00 df 17 18 19 20 21 22 23 24 .05 27.59 28.87 30.14 31.41 32.67 33.92 35.17 36.42 .01 33.41 34.81 36.19 37.57 38.93 40.29 41.64 42.98 df 25 26 27 28 29 30 .05 37.65 38.89 40.14 41.34 42.56 43.77 .01 44.31 45.64 46.96 48.28 49.59 50.89 Critical values of 2 Critical values  = .05 Slide11:  df 1 2 3 4 5 6 7 8 .05 3.84 5.99 5.82 9.49 11.07 12.59 14.07 15.51 .01 6.63 9.21 11.34 13.28 15.09 16.81 18.48 20.09 df 9 10 11 12 13 14 15 16 .05 16.92 18.31 19.68 21.03 22.36 23.68 25.00 26.30 .01 21.67 23.21 24.72 26.22 27.69 29.14 30.58 32.00 df 17 18 19 20 21 22 23 24 .05 27.59 28.87 30.14 31.41 32.67 33.92 35.17 36.42 .01 33.41 34.81 36.19 37.57 38.93 40.29 41.64 42.98 df 25 26 27 28 29 30 .05 37.65 38.89 40.14 41.34 42.56 43.77 .01 44.31 45.64 46.96 48.28 49.59 50.89 Critical values of 2 Critical values  = .01 Example:  Example If there were 5 degrees of freedom, how big would 2 have to be for significance at the .05 level? Slide13:  df 1 2 3 4 5 6 7 8 .05 3.84 5.99 5.82 9.49 11.07 12.59 14.07 15.51 .01 6.63 9.21 11.34 13.28 15.09 16.81 18.48 20.09 df 9 10 11 12 13 14 15 16 .05 16.92 18.31 19.68 21.03 22.36 23.68 25.00 26.30 .01 21.67 23.21 24.72 26.22 27.69 29.14 30.58 32.00 df 17 18 19 20 21 22 23 24 .05 27.59 28.87 30.14 31.41 32.67 33.92 35.17 36.42 .01 33.41 34.81 36.19 37.57 38.93 40.29 41.64 42.98 df 25 26 27 28 29 30 .05 37.65 38.89 40.14 41.34 42.56 43.77 .01 44.31 45.64 46.96 48.28 49.59 50.89 Critical values of 2 Another example:  Another example If there were 2 degrees of freedom, how big would 2 have to be for significance at the .05 level? Note: Unlike most other tables you have seen, the critical values for Chi Square get larger as df increase. This is because you are summing over more cells, each of which usually contributes to the total observed value of chi square. Slide15:  df 1 2 3 4 5 6 7 8 .05 3.84 5.99 5.82 9.49 11.07 12.59 14.07 15.51 .01 6.63 9.21 11.34 13.28 15.09 16.81 18.48 20.09 df 9 10 11 12 13 14 15 16 .05 16.92 18.31 19.68 21.03 22.36 23.68 25.00 26.30 .01 21.67 23.21 24.72 26.22 27.69 29.14 30.58 32.00 df 17 18 19 20 21 22 23 24 .05 27.59 28.87 30.14 31.41 32.67 33.92 35.17 36.42 .01 33.41 34.81 36.19 37.57 38.93 40.29 41.64 42.98 df 25 26 27 28 29 30 .05 37.65 38.89 40.14 41.34 42.56 43.77 .01 44.31 45.64 46.96 48.28 49.59 50.89 Critical values of 2 One sample example from the cpe: Party: 75% male, 25% female There are 40 swimmers. Since 75% of people at party are male, 75% of swimmers should be male. So expected value for males is .750 X 40 = 30. For women it is .250 x 40 = 10.00:  One sample example from the cpe: Party: 75% male, 25% female There are 40 swimmers. Since 75% of people at party are male, 75% of swimmers should be male. So expected value for males is .750 X 40 = 30. For women it is .250 x 40 = 10.00 Male Female Observed 20 20 Expected 30 10 O-E -10 10 (O-E)2 100 100 (O-E)2/E 3.33 10 df = k-1 = 2-1 = 1 Slide17:  df 1 2 3 4 5 6 7 8 .05 3.84 5.99 5.82 9.49 11.07 12.59 14.07 15.51 .01 6.63 9.21 11.34 13.28 15.09 16.81 18.48 20.09 df 9 10 11 12 13 14 15 16 .05 16.92 18.31 19.68 21.03 22.36 23.68 25.00 26.30 .01 21.67 23.21 24.72 26.22 27.69 29.14 30.58 32.00 df 17 18 19 20 21 22 23 24 .05 27.59 28.87 30.14 31.41 32.67 33.92 35.17 36.42 .01 33.41 34.81 36.19 37.57 38.93 40.29 41.64 42.98 df 25 26 27 28 29 30 .05 37.65 38.89 40.14 41.34 42.56 43.77 .01 44.31 45.64 46.96 48.28 49.59 50.89 Critical values of 2 2 (1, n=40)= 13.33 Men go swimming less than expected. Gender does affect who goes swimming. Exceeds critical value at  = .01 Reject the null hypothesis. Women go swimming more than expected. 2 sample example:  2 sample example Freshman and sophomores who like horror movies. Likes horror films Dislikes horror films 150 200 100 50 … CPE 15.2.1 Freshman and sophomores and horror movies.:  … CPE 15.2.1 Freshman and sophomores and horror movies. There are 500 altogether. 200 (or a proportion of .400 are freshmen, 300 (.600) are sophmores. (Proportions appear in parentheses in the margins.) Multiplying by row totals yield the following expected frequency for the first cell. (This time we use the formula: (Proprowncol)=Expected Frequency). (EF appears in parentheses in each cell.) Likes horror films Dislikes horror films 150 200 (150) 100 (150) 50 (100) 200 (.400) 300 (.600) 250 250 500 (100) Computing 2 :  Computing 2 Fresh Likes Fresh Dislikes Soph Likes Soph Dislikes Observed 150 100 50 200 Expected 100 150 100 150 df = (C-1)(R-1) = (2-1)(2-1) = 1 Slide21:  df 1 2 3 4 5 6 7 8 .05 3.84 5.99 5.82 9.49 11.07 12.59 14.07 15.51 .01 6.63 9.21 11.34 13.28 15.09 16.81 18.48 20.09 df 9 10 11 12 13 14 15 16 .05 16.92 18.31 19.68 21.03 22.36 23.68 25.00 26.30 .01 21.67 23.21 24.72 26.22 27.69 29.14 30.58 32.00 df 17 18 19 20 21 22 23 24 .05 27.59 28.87 30.14 31.41 32.67 33.92 35.17 36.42 .01 33.41 34.81 36.19 37.57 38.93 40.29 41.64 42.98 df 25 26 27 28 29 30 .05 37.65 38.89 40.14 41.34 42.56 43.77 .01 44.31 45.64 46.96 48.28 49.59 50.89 Critical values of 2 2 (1, n=500)= 83.33 Fresh/Soph dimension does affect liking for horror movies. Critical at  = .01 Reject the null hypothesis. Proportionally, more freshman than sophomores like horror movies The only (slightly) hard part is computing expected frequencies:  The only (slightly) hard part is computing expected frequencies In one sample case, multiply n by hypothetical proportion based on random model. Random model says that proportion in population in each category should be same as in the sample. Simple Example - 100 teenagers listen to radio stations:  Simple Example - 100 teenagers listen to radio stations H1: Some stations are more popular with teenagers than others. H0: Radio station do not differ in popularity with teenagers. NOTE: YOU ALWAYS TEST H0 Expected frequencies are the frequencies predicted by the null hypothesis. In this case, the problem is simple because the null predicts an equal proportion of teenagers will prefer each of the four radio stations. Is the observed significantly different from the expected? Slide24:  Observed Expected df = k-1 = (4-1) = 3 2(3, n=100) = 20.00, p<.01 Category 1 Station 2 Station 3 Station 4 40 30 20 10 25 25 25 25 15 5 -5 15 225 25 25 225 9.00 1.00 1.00 9.00 Closeness to final exam Example - Admissions to Psychiatric Hospitals Close to a once/year final:  Example - Admissions to Psychiatric Hospitals Close to a once/year final H1: More students are admitted to psychiatric hospitals when it is near their final exam. H0: Time from final exam does not have an effect on hospital admissions. . Category 1: Within 7 days of final. (11 admitted) Category 2: Between 8 and 30 days. (24 admitted) Category 3: Between 31 and 90 days. (69 admitted) Category 4: More than 90 days. (96 admitted) Psychiatric Admissions:  Psychiatric Admissions Expected frequency=expected proportion of days*n There are 365 days and 1 final and 200 patients admitted each year. Proportion of each kind of day computed below: Expected Frequencies:  Expected Frequencies To obtain expected frequencies with 200 admissions: multiply proportion of days of each type by n=200. This time the proportions are not equal. Slide28:  Observed Expected df = k-1 = (4-1) = 3 2(3, n=200) = 1.57, n.s. Category 1 Category 2 Category 3 Category 4 11 24 69 96 8 26 66 100 3 -2 3 -4 9 4 9 16 1.12 0.15 0.14 0.16 Closeness to final exam The only (slightly)hard part is computing expected frequencies:  The only (slightly)hard part is computing expected frequencies In the multi-sample case, multiply the proportion in each row by n in each column to obtain EF in each cell. Vit C and flu study:  Vit C and flu study Sixty randomly chosen participants. Thirty get Vitamin C. Of that 30, 10 get the flu, 20 do not Thirty get placebo Of that 30, 15 get the flu, 15 do not Expected frequency = proportionROW nCOL:  Expected frequency = proportionROW nCOL got flu no flu row n (prop.) Vit C 10 20 30 (.500) No Vit C 15 15 30 (.500) Col. Totals 30 30 n=60 Expected frequencies:  Expected frequencies Multiply the proportion in each row times the number in each column. Here Vitamin C row has 30 research participants. Total n = 60. So proportion in that row =30/60=.500. Same for placebo group. Number in each column: Twenty-five got influenza. So (25 X .500=12.50 should come from the Vitamin C group. Same for placebo. Thirty five did not get influenza, so 35X.500 = 17.5 of each group should not have gotten the flu. Are the observed significantly different from the expected? Computing 2 :  Computing 2 VitC-got flu VitC-no flu Placebo-got flu Placebo-no flu Observed 10 20 15 15 Expected 12.50 17.50 12.50 17.50 df = (C-1)(R-1) = (2-1)(2-1) = 1 Differences are not significant:  Differences are not significant 2 (1, n=60) = 1.72, n.s. Vit C consumption not significantly related to getting the flu in this study. A 3 x 4 Chi Square:  A 3 x 4 Chi Square Women, stress, and seating preferences. (and perimeter vs. interior, front vs. back Very Stressed Females Moderately Stressed Females Control Group Females Front Front Back Back Perim Inter Perim Inter 10 60 15 35 30 50 70 5 10 15 15 25 20 n=300 60 30 150 100 100 100 Proportion in each row:  Proportion in each row nROW/n=100/300=.333 Expected frequencies:  Expected frequencies Women, stress, and perimeter versus interior seating preferences. Very Stressed Females Moderately Stressed Females Control Group Females 10 60 15 35 30 50 70 5 10 15 15 25 20 300 60 30 150 100 100 100 (20) (20) (20) Front Front Back Back Perim Inter Perim Inter Column 2:  Column 2 Women, stress, and perimeter versus interior seating preferences. Very Stressed Females Moderately Stressed Females Control Group Females 10 60 15 35 30 50 70 5 10 15 15 25 20 300 60 30 150 100 100 100 (20) (20) (20) (50) (50) (50) Front Front Back Back Perim Inter Perim Inter Column 3:  Column 3 Women, stress, and perimeter versus interior seating preferences. Very Stressed Females Moderately Stressed Females Control Group Females 10 60 15 35 30 50 70 5 10 15 15 25 20 300 60 30 150 100 100 100 (20) (20) (20) (50) (50) (50) (10) (10) (10) Front Front Back Back Perim Inter Perim Inter All the expected frequencies:  All the expected frequencies Women, stress, and perimeter versus interior seating preferences. Very Stressed Females Moderately Stressed Females Control Group Females 10 60 15 35 30 50 70 5 10 15 15 25 20 300 60 30 150 100 100 100 (20) (20) (20) (50) (50) (50) (10) (10) (10) (20) (20) (20) Front Front Back Back Perim Inter Perim Inter Slide41:  FrontP FrontI BackP BackI Observed 10 70 5 15 Expected 20 50 10 20 df = (C-1)(R-1) = (4-1)(3-1) = 6 Very Stressed FrontP FrontI BackP BackI 15 50 10 25 20 50 10 20 -5 0 0 5 25 0 0 25 1.25 0.00 0.00 1.25 Moderately Stressed FrontP FrontI BackP BackI 35 30 15 20 20 50 10 20 15 -20 5 0 225 400 25 0 11.25 8.00 2.50 0.00 Control Group Slide42:  df 1 2 3 4 5 6 7 8 .05 3.84 5.99 5.82 9.49 11.07 12.59 14.07 15.51 .01 6.63 9.21 11.34 13.28 15.09 16.81 18.48 20.09 df 9 10 11 12 13 14 15 16 .05 16.92 18.31 19.68 21.03 22.36 23.68 25.00 26.30 .01 21.67 23.21 24.72 26.22 27.69 29.14 30.58 32.00 df 17 18 19 20 21 22 23 24 .05 27.59 28.87 30.14 31.41 32.67 33.92 35.17 36.42 .01 33.41 34.81 36.19 37.57 38.93 40.29 41.64 42.98 df 25 26 27 28 29 30 .05 37.65 38.89 40.14 41.34 42.56 43.77 .01 44.31 45.64 46.96 48.28 49.59 50.89 Critical values of 2 2 (6, N=300)= 41.00 There is an effect between stressed women and seating position. Critical at  = .01 Reject the null hypothesis. Slide43:  FrontP FrontI BackP BackI Observed 10 70 5 15 Expected 20 50 10 20 O-E -10 20 -5 -5 (O-E)2 100 400 25 25 (O-E)2/E 5.00 8.00 2.50 1.25 2 = 41.00 df = (C-1)(R-1) = (4-1)(3-1) = 6 Very Stressed FrontP FrontI BackP BackI 15 50 10 25 20 50 10 20 -5 0 0 5 25 0 0 25 1.25 0.00 0.00 1.25 Moderately Stressed FrontP FrontI BackP BackI 35 30 15 20 20 50 10 20 15 -20 5 0 225 400 25 0 11.25 8.00 2.50 0.00 Control Group Very stressed women avoid the perimeter and prefer the front interior. The control group prefers the perimeter and avoids the front interior. Summary: Different Ways of Computing the Frequencies Predicted by the Null Hypothesis:  Summary: Different Ways of Computing the Frequencies Predicted by the Null Hypothesis One sample Expect subjects to be distributed equally in each cell. OR Expect subjects to be distributed proportionally in each cell. OR Expect subjects to be distributed in each cell based on prior knowledge, such as, previous research. Multi-sample Expect subjects in different conditions to be distributed similarly to each other. Find the proportion in each row and multiply by the number in each column to do so. Conclusion - Chi Square:  Conclusion - Chi Square Chi Square is a non-parametric statistic,used for nominal data. It is equivalent to the F test that we used for single factor and factorial analysis. Chi Square compares the expected frequencies in categories to the observed frequencies in categories. … Conclusion - Chi Square:  … Conclusion - Chi Square The null hypothesis: H0: fo = fe There is no difference between the observed frequency and frequency predicted by the null hypothesis. The experimental hypothesis: H1: fo  fe The observed frequency differs significantly from the frequency expected by the null hypothesis. The end.:  The end.

Add a comment

Related presentations

Related pages

C14 – Wikipedia

C14 oder C 14 steht für: Bösartige Neubildung des Oropharynx, eine Erkrankung, siehe Kopf-Hals-Karzinom; C14-Methode, ein Verfahren zur radiometrischen ...
Read more

C14 Bikes | MTB - Rennrad - Cyclocross

Tipp der Woche in der velomotion C14 Cross Pro SL Disc Drive-by-wire im Gelände. Das ist es also, das komplett Seilzug-lose Fahrrad! Passend zur ...
Read more

Radiokarbonmethode – Wikipedia

Eine C14-Untersuchung eines Holzgegenstands liefert daher nicht den Zeitpunkt, zu dem der Baum gefällt wurde, sondern ein größeres Alter.
Read more

Carbon-14 - Wikipedia, the free encyclopedia

Carbon-14, 14 C, or radiocarbon, is a radioactive isotope of carbon with an atomic nucleus containing 6 protons and 8 neutrons. Its presence in organic ...
Read more

C14 - Chronologie-Rekonstruktion | Die Chronologie ...

von Andreas Otte. Dieser Beitrag soll die Kritiken von H.-U. Niemitz, Christian Blöss, Heribert Illig und Gunnar Heinsohn an unterschiedlichen ...
Read more

C14 - Wikipedia, the free encyclopedia

C14, C.XIV or C-14 may be: Autovia C-14, a highway in Catalonia in Spain; Fokker C.XIV, a 1937 Dutch reconnaissance seaplane; HMS C14, a 1908 British C ...
Read more

C14-Shop

Willkommen im C14-Shop Wir sind innovativ - Unsere Standards sind hoch - Wir entwickeln Technologien weiter. Sie finden bei uns hochwertige, elegante ...
Read more

Kaltgeräte-Steckverbinder C14 Stecker, Einbau vertikal ...

Kaltgeräte-Steckverbinder C14 Stecker, Einbau vertikal Gesamtpolzahl: 3 10 A Schwarz K & B 59JR101-1FR-LR 1 St. Ihr größter Online-Shop für Elektronik ...
Read more

Gilera Runner C14 in Baden-Württemberg - Baden-Baden ...

Biete Gilera Runner C14, der Roller ist optisch nicht mehr der schönste. Es gibt auf der linken...,Gilera Runner C14 in Baden-Württemberg - Baden-Baden
Read more

C-14 - Die Radiocarbonmethode - Ihre Homepage bei Arcor ...

Diese Internetseiten sollen Ihnen einen umfassenden Einblick in die komplexe Thematik der Radiocarbonmethode vermitteln. Nach Belieben können Sie dabei ...
Read more