Babinec Senior Research Presentation

56 %
44 %
Information about Babinec Senior Research Presentation
News-Reports

Published on September 6, 2007

Author: Crystal

Source: authorstream.com

Patterns in Pascal’s Triangle:Do They Apply to Similar Triangular Arrays?:  Patterns in Pascal’s Triangle: Do They Apply to Similar Triangular Arrays? Nicole Forcum Mentor: Dr. Scott Sportsman Faculty: Dr. Lisa Rome Senior Research April 2005 Topics to Discuss::  Topics to Discuss: History Defining Pascal’s Triangle Properties Proof techniques Where to go now History of Pascal’s Triangle:  History of Pascal’s Triangle Who is given credit? A Treatise on the Arithmetic Triangle A Treatise on the Arithmetical Triangle Uses of the Arithmetical Triangle Figurate numbers Theory of combinations Dividing the stake in games of chance Finding powers of binomial expressions Pascal’s Triangle:  Pascal’s Triangle 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 Defining Pascal’s Triangle:  Defining Pascal’s Triangle an,r = position value n represents row number r represents element Definition: an,r = an-1,r-1 + an-1,r an,n = 1, an,0 = 1 1 1 1 1 2 1 1 3 3 1 Properties of Pascal’s Triangle:  Properties of Pascal’s Triangle Hockey Stick Sum of Rows Alternating Sums Hexagon Pattern Properties of Pascal’s Triangle:Hockey Stick:  Properties of Pascal’s Triangle: Hockey Stick 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 Multiple Triangular Array:Hockey Stick:  Multiple Triangular Array: Hockey Stick 2 2 2 2 4 2 2 6 6 2 2 8 12 8 2 2 10 20 20 10 2 2 12 30 40 30 12 2 2 14 42 70 70 42 12 2 2 16 56 112 140 112 56 16 2 Consecutive Triangular Array:Hockey Stick Pattern:  Consecutive Triangular Array: Hockey Stick Pattern 1 1 2 1 3 3 1 4 6 4 1 5 10 10 5 1 6 15 20 15 6 1 7 21 35 35 21 7 1 8 28 56 70 56 28 8 Consecutive Triangular Array:Hockey Stick Pattern:  Consecutive Triangular Array: Hockey Stick Pattern 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 Powers of 2 Triangular Array:Hockey Stick:  Powers of 2 Triangular Array: Hockey Stick 1 1 2 1 3 4 1 4 7 8 1 5 11 15 16 1 6 16 26 31 32 1 7 22 42 57 63 64 1 8 29 64 99 120 127 128 1 9 37 93 163 219 247 255 256 Properties of Pascal’s Triangle: Sum of Rows:  Properties of Pascal’s Triangle: Sum of Rows 1 = 20 1+1 = 2 = 21 1+2+1 = 4 = 22 1+3+3+1 = 8 = 23 1+4+6+4+1 =16 = 24 1+5+10+10+5+1 = 32 =25 1+6+15+20+15+6+1 = 64 = 26 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 Consecutive Triangular Array:Sum of Rows:  Consecutive Triangular Array: Sum of Rows 1+2 = 3 = 22 - 1 1+3+3 = 7= 23 - 1 1+4+6+4 = 15 = 24 - 1 1+5+10+10+5 = 31 = 25 - 1 1+6+15+20+15+6 = 63 = 26 - 1 1+7+21+35+35+21+7 = 127 = 27 - 1 1 1 2 1 3 3 1 4 6 4 1 5 10 10 5 1 6 15 20 15 6 1 7 21 35 35 21 7 Powers of 2 Triangular Array:Sum of Rows:  Powers of 2 Triangular Array: Sum of Rows 1+2 = 3 1+3+4 = 8 1+4+7+8 = 20 1+5+11+15+16 = 48 1+6+16+26+31+32 = 112 1+7+22+42+57+63+64 = 256 1 1 2 1 3 4 1 4 7 8 1 5 11 15 16 1 6 16 26 31 32 1 7 22 42 57 63 64 Why?:  Why? n = 4 : 1 5 11 15 16 1 + 5 + 11 + 15 + 16 = s 16 + 15 + 11 + 5 + 1 = s 16 + 16 + 16 + 16 + 16 + 16 = 2s 6*24 = 2s 6*23 = s (n+2)2n-1 = s Properties of Pascal’s Triangle:Alternating Row Sums:  Properties of Pascal’s Triangle: Alternating Row Sums 1-1 = 0 1-3+3-1 = 0 1-5+10-10+5-1 = 0 1-2+1 = 0 1-4+6-4+1 = 0 1-6+15-20+15-6+1 = 0 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 Consecutive Triangular Array:Alternating Row Sums:  Consecutive Triangular Array: Alternating Row Sums 1-2 = -1 1-3+3 = 1 1-4+6-4 = -1 1-5+10-10+5 = 1 1-6+15-20+15-6 = -1 1 1 2 1 3 3 1 4 6 4 1 5 10 10 5 1 6 15 20 15 6 Powers of 2 Triangular Array:Alternating Row Sums:  Powers of 2 Triangular Array: Alternating Row Sums 1-2 = -1 = -(20) 1-3+4 = 2 = 21 1-4+7-8 = -4 = -(22) 1-5+11-15+16 = 8 = 23 1-6+16-26+31-32 = -16 = -(24) 1-7+22-42+57-63+64 = 32 = 25 1 1 2 1 3 4 1 4 7 8 1 5 11 15 16 1 6 16 26 31 32 1 7 22 42 57 63 64 Properties of Pascal’s Triangle:Hexagon Pattern:  Properties of Pascal’s Triangle: Hexagon Pattern 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 Consecutive Triangular Array:Hexagon Pattern:  Consecutive Triangular Array: Hexagon Pattern 1 1 2 1 3 3 1 4 6 4 1 5 10 10 5 1 6 15 20 15 6 1 7 21 35 35 21 7 1 8 28 56 70 56 28 8 Powers of 2 Triangular Array:Hexagon Pattern:  Powers of 2 Triangular Array: Hexagon Pattern 1 1 2 1 3 4 1 4 7 8 1 5 11 15 16 1 6 16 26 31 32 1 7 22 42 57 63 64 1 8 29 64 99 120 127 128 1 9 37 93 163 219 247 255 256 Counting Proof: an,r = # ways to choose r from nFactorial Proof: an,r =Decision Proof : an,r = # of paths, L & R Movements:  Counting Proof: an,r = # ways to choose r from n Factorial Proof: an,r = Decision Proof : an,r = # of paths, L andamp; R Movements Decision Proof:Left & Right Movements:  Decision Proof: Left andamp; Right Movements a4,0 = 1 a4,4 = 1 a3,2 = 3 a4,2 = 6 How Will I Apply The Research?:  How Will I Apply The Research? High School Teacher Lesson plans Thank You :  Thank You Parents andamp; Dan Classmates Dr. Sportsman andamp; Dr. Rome Questions?:  Questions?

Add a comment

Related presentations

Related pages

Lithium Battery Power Conference - Knowledge Foundation

Lithium Battery Power 2014 will present papers on ... Susan Babinec, Senior ... U.S. Naval Research Laboratory. 9:05 KEYNOTE PRESENTATION: ...
Read more

Lithium Battery Power Conference - Knowledge Foundation

Lithium Battery Power Conference Global demand for ... presents innovative and game-changing research on lithium ... Susan Babinec, Senior ...
Read more

Shippensburg University – News – Accomplishments of ...

Accomplishments of SU faculty, employees. ... The title of their invited presentation was "An Action Research Project ... Martin D. Babinec Research ...
Read more

33rd Annual March 21-24, 2016 SAVE UP Fort Lauderdale ...

Fort Lauderdale Convention Center Fort Lauderdale, FL ... Susan Babinec, Senior Commercialization Advisor, ... and Research, Ford Motor
Read more

Patterns in Pascal’s Triangle: Do They Apply to Similar ...

Babinec Senior Research Presentation.ppt File Size: unknown Published on: July 1st, 2010 Publisher: mc.msj.edu Report Abuse. Download. Destinations: ...
Read more

Top 24 Commercialization Advisor profiles | LinkedIn

Current: Senior Commercialization Advisor at Advanced Research Projects Agency (ARPA-E) Past: Founder / CEO / Principal at Skypoint Solar, Inc., Board of ...
Read more

Technology Innovation Forum VII - Materials Research Society

The seventh Technology Innovation Forum, Challenges and Opportunities in Commercializing Materials Research, focuses on various aspects of how ...
Read more

ARPA-E Energy Storage

ARPA-E Energy Storage Sue Babinec ARPA-E Senior Commercialization Adviser The Agency & Our Approach -----> Energy Storage
Read more