An Autonomous Onboard Targeting Algorithm using Finite Thrust Maneuvers

56 %
44 %
Information about An Autonomous Onboard Targeting Algorithm using Finite Thrust Maneuvers
Technology

Published on March 21, 2014

Author: BelindaMarchand

Source: slideshare.net

Description

Talk charts for presentation at the 2009 AIAA Guidance, Navigation, and Control Conference & Exhibit, held
August 10-13, 2009, Chicago, IL

An Autonomous Onboard Targeting Algorithm using Finite Thrust Maneuvers Sara K. Scarritt, Belinda G. Marchand, MichaelW.Weeks AIAA Guidance, Navigation, and Control Conference & Exhibit 10-13August 2009, Chicago, IL AIAA 2009-6104 1

Introduction  Onboard guidance for Orion lunar return  Two-level targeting algorithm  Based on linear system theory  Designed for impulsive maneuvers  In a main engine failure scenario, impulsive approximation invalid  Adapt two-level targeter to incorporate finite burns while retaining its simplicity 22

Classical Impulsive Level I Process Goal: Position Continuity Only Control Variables: DV’s BEFORE LEVEL I AFTER LEVEL I

Classical Level II Process: Goal: Meet Specified Constraints (e.g. Velocity Continuity), Control Variables: Time & Position of Patch States BEFORE LEVEL II IMPLEMENTATION IN THE N/L SYSTEM LEVEL II: LINEAR CORRECTION

T kr 1k  k T Level 1: Impulsive vs. Finite Burn 5 1 Constraint: Control Variables: , k k Tt    r 0 u1 Constraint: Control Variables: k k    D r 0 v IMPULSIVE FINITE BURN kr 1kDv 1k  k 11 1 g m m                  r v x u 6 1        r x v

Variational Equations: Impulsive vs. Finite Burn 6 , 1 , 1 1 1 1 , 1 , 1 1 1 1 k k k kk k k k k k k k k kk kk k k k A Bt t C Dt t                                          r v r v v a v a IMPULSIVE FINITE BURN , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 T T T T T k T k T k T k T kT T T T k T k T k T k T kT T T T k T k T k T k T kT g T T k T k T k T k T kg g T T g T A B E F Gt C D H I Jt K L M N Om m t P Q R S Tm m t t                                                        r v v a u u 1 1 1 1 1 1 1 1 1 1 1 1 , 1 , 1 , 1 , 1 , 1 1 1 1 k k k k k k k k k k g k g g k T k T k T k T k T k k k k t t m m t m m t U V W X Y t                                                                 r v v a u u , 1 , 1 1 1 1 , 1 , 1 1 1 1 k k k kk k k k k k k k k kk kk k k k A Bt t C Dt t                                          r v r v v a v a , 1 , 1 1 1 1 , 1 , 1 1 1 1 k k k kk k k k k k k k k kk kk k k k A Bt t C Dt t                                          r v r v v a v a , , , , k T k Tk k k T T T k T k Tk k T Tk T A Bt t C Dt t                                r v r v v a v a

Level 1 Targeting  Direct fromTEI-3 to Earth entry  Entry targets:  GeodeticAltitude (km) 121.92  Longitude (deg) 175.6365  GeocentricAzimuth (deg) 49.3291  Geocentric Flight PathAngle (deg) -5.86 7

Level II Algorithm: Impulsive vs. Finite Burn 8 k  v k  v 1k  k 1k      1 2 1 0 0 1 1 Constraints: , , , , , , , , , , v Control Var , ,iables: , , ,, jn TEI j n n h t t t              D D D D D    V = v v v A = b = r r r k  v k  v 1k  k 1k  T IMPULSIVE FINITE BURN   1T M T M MM      D   D D                    V V Vb A A b bb A

Variational Equations: Impulsive vs. Finite Burn 9 , 1 , 1 1 1 1 , 1 , 1 1 1 1 k k k kk k k k k k k k k kk kk k k k A Bt t C Dt t                                          r v r v v a v a IMPULSIVE FINITE BURN , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 T T T T T k T k T k T k T kT T T T k T k T k T k T kT T T T k T k T k T k T kT g T T k T k T k T k T kg g T T g T A B E F Gt C D H I Jt K L M N Om m t P Q R S Tm m t t                                                        r v v a u u 1 1 1 1 1 1 1 1 1 1 1 1 , 1 , 1 , 1 , 1 , 1 1 1 1 k k k k k k k k k k g k g g k T k T k T k T k T k k k k t t m m t m m t U V W X Y t                                                                 r v v a u u , 1 , 1 1 1 1 , 1 , 1 1 1 1 k k k kk k k k k k k k k kk kk k k k A Bt t C Dt t                                          r v r v v a v a , 1 , 1 1 1 1 , 1 , 1 1 1 1 k k k kk k k k k k k k k kk kk k k k A Bt t C Dt t                                          r v r v v a v a , , , , k T k Tk k k T T T k T k Tk k T Tk T A Bt t C Dt t                                r v r v v a v a

Total Cost Constraint: Impulsive vs. Finite Burn 10 v | |k k k   D  v v   0v ln 1 kg T k k sp k m t t I g m   D        v , ,k k T kf t t mD      1 1 1 1 , , , , , , k k k k k k k k k k k k t t t t           v v r r v v r r IMPULSIVE FINITE BURN 1 0 1 [ ] n k g burn j j m m m t     D

Main Engine Simulation  Initial guess data  Epoch: 4-Apr-2024 15:30:00TDT  Initial mass: 20339.9 kg (total fuel = 8063.65 kg)  Main EngineThrust: 33,361.6621 N  Main Engine Isp: 326 sec  State (J2000 Moon-centered inertial frame):  X: -1236.7970783385588 km  Y: 1268.1142350088496 km  Z: 468.38317094160635 km  Vx: 0.0329108058365355 km/sec  Vy: 0.589269803607714 km/sec  Vz -1.528058717568413 km/sec  Entry constraints:  GeodeticAltitude (km): 121.92  Longitude (deg): 175.6365  GeocentricAzimuth (deg): 49.3291  Geocentric Flight PathAngle (deg): - 5.86 11

Results (1/2) 12 MCI Frame Perspective Earth Moon

Results (2/2)  Comparison of finite burn and impulsive algorithms: 13

Auxiliary Engine Simulation  Same initial guess data and constraints  Assume main engine failure afterTEI-1  TEI-2 andTEI-3 performed using auxiliary engines:  Auxiliary EngineThrust: 4,448.0 N  Auxiliary Engine Isp: 309 sec 1414

Results  Maneuver and final constraint data: 1515

Lunar Cycle Simulations  Simulations run for 10 different days spanning February 2024  Patch points from converged impulsive runs  Initial lunar orbit of 100 km, targeting altitude (121.9 km) and flight path angle (-5.86o)  Auxiliary engines used forTEI-2 andTEI-3

Results

Delayed Patch Points  Patch points associated with specific epoch  Targeter must converge even if the patch points are not current  Using February 1 input file from previous example, initial epoch delayed for (a) 3 hours and (b) 12 hours

Results

Conclusions and Future Work  Two-level targeting algorithm developed for finite burn maneuvers  Algorithm successfully targets lunar return trajectory  Using main engines  Using auxiliary engines following simulated failure of main engines afterTEI-1  Future work  Implementing thruster steering law  Automated patch point selection 20

Add a comment

Related presentations

Presentación que realice en el Evento Nacional de Gobierno Abierto, realizado los ...

In this presentation we will describe our experience developing with a highly dyna...

Presentation to the LITA Forum 7th November 2014 Albuquerque, NM

Un recorrido por los cambios que nos generará el wearabletech en el futuro

Um paralelo entre as novidades & mercado em Wearable Computing e Tecnologias Assis...

Microsoft finally joins the smartwatch and fitness tracker game by introducing the...

Related pages

An Autonomous Onboard Targeting Algorithm Using Finite ...

An Autonomous Onboard Targeting Algorithm Using Finite Thrust Maneuvers Sara K. Scarritt∗, Belinda G. Marchand †, Michael W. Weeks # I. Abstract
Read more

An Autonomous Onboard Targeting Algorithm Using Finite ...

An Autonomous Onboard Targeting Algorithm Using Finite Thrust Maneuvers ... onboard targeting algorithm for the ... an autonomous targeting algorithm ...
Read more

NASA Technical Reports Server (NTRS) - An Autonomous ...

An Autonomous Onboard Targeting Algorithm Using Finite Thrust Maneuvers: NTRS Full-Text: Click to View [PDF Size: 946 KB] Author and Affiliation:
Read more

An Autonomous Onboard Targeting Algorithm using Finite ...

An Autonomous Onboard Targeting Algorithm using Finite Thrust Maneuvers Sara K. Scarritt, Belinda G. Marchand, Michael W. Weeks 1
Read more

An Autonomous Onboard Targeting Algorithm Using Finite ...

An Autonomous Onboard Targeting Algorithm Using Finite Thrust Maneuvers on ResearchGate, the professional network for scientists.
Read more

An Autonomous Onboard Targeting Algorithm Using Finite ...

An Autonomous Onboard Targeting Algorithm Using Finite ... In an actual onboard ... An Autonomous Onboard Targeting Algorithm Using Finite Thrust Maneuvers.
Read more

An Autonomous Onboard Targeting Algorithm Using Finite ...

An Autonomous Onboard Targeting Algorithm Using Finite Thrust Maneuvers Related Publications. Google Scholar. Search for other articles ...
Read more

NASA Technical Reports Server (NTRS) 20090028615: An ...

... the adaptation and implementation of a modified two-level corrections process as the onboard targeting algorithm for the Trans-Earth ...
Read more

An Autonomous Onboard Targeting Algorithm Using Finite ...

An Autonomous Onboard Targeting Algorithm Using Finite ... magnitudes of the required maneuvers such that the ... when lower thrust engines are ...
Read more

an autonomous onboard targeting algorithm using finite thrust

AIAAGuidance, Navigation, ControlConference Exhibit,10-13 August 2009, Chicago, IL AutonomousOnboard Targeting Algorithm Using Finite Thrust Maneuvers Sara ...
Read more