3 d viewing

33 %
67 %
Information about 3 d viewing
Art & Photos

Published on April 5, 2014

Author: deepakofheart

Source: slideshare.net

Advanced Graphics & Animation 3D Viewing Pipeline

Three-dimensional Viewing Pipeline Transform into view coordinates and Canonical view volume Clip against canonical view volume Project on to view plane Map into viewport Transform to physical Device coordinates transform clip transform World coordinates(3D) View coordinates(3D) View coordinates(3D) View coordinates(2D) Normalized device coordinates Physical device coordinates

Parallel Projection  Mostly used by drafters and engineers to create working drawings of an object which preserves its scale and shape.  The distance between the COP and the projection plane is infinite i.e. The projectors are parallel to each other and have a fixed direction. P1 P2 P1‟ P2‟ Projection plane

• Orthographic projection: here direction of projection is perpendicular to the view plane. • Axonometric projection: when direction of projection is not parallel to any of three principal axes.

Perspective Projection • Generalization of the principles used by artists in drawing of scenes. • It takes object representation in view space (L.H.S.) and produce a projection on the view plane (canvas used by the artist). • The projection of a 3D point onto the viewplane is the intersection of the line from the point to the COP (eye position of the artist).

Cont. • Distance between the COP and projection plane is finite. • Perspective projection does not preserve object scale and shape. P1 P2 P1‟ P2‟ Projection plane COP

Perspective Anomalies Perspective foreshortening - the farther an object from the COP, the smaller it appears (i.e. its projected size becomes smaller). cop View plane

Vanishing points - there is an illusion that certain sets of parallel lines (that are not parallel to the view plane ) appear to meet at some point on the view plane. - the vanishing point for any set of parallel lines that are parallel to one of principal axis is referred to as a principal vanishing point (PVP). - the number of PVPs is determined by the number of principal axes intersected by the view plane.

One principal vanishing point projection - occurs when the projection plane is perpendicular to one of the principal axes (x, y or z ). Vanishing point View plane is parallel to XY-plane and intersects Z-axis only.

Two principal vanishing point projection X-axis Vanishing point Z-axis Vanishing point View plane intersects Both X and Z axis but not the Y axis

• Three principal vanishing point intersection View plane intersects all Three of the principal axis X, Y and Z axis VP1 VP3 VP2

Deriving Perspective Projection Assume point vertex denoting COP : (xc,yc,zc) point on the object : (x1,y1,z1) representation of “projection ray” containing above two points x = xc + ( x1-xc) u …………..eq 1 y = yc + ( y1-yc) u …………..eq 2 z = zc + ( z1-zc) u …………..eq 3 The projected point (x2, y2,D) will be the point where this line intersects the XY plane . Putting z=0 for this intersection point in eq 3 . u = - zc / z1-zc

Substituting into first two equations, x2 = y2 = Value of D may be computed which is different from zero (to preserve depth relationship between objects) D = z1 / (z1 –zc) z-z zx-zx c1 c11c z-z zy-zy c1 c11c

Standard perspective projection y x z A (x,0,z) A‟ (x‟,0,0) P (x ,y, z) P‟ (x‟,y‟,0) C(0,0,-d) do (0,0,0)B (0,0,z) z

Using similar triangles ABC and A‟OC, x‟ = d.x / (z+d) y‟ = d.y / (z+d) z‟ = 0 matrix representation : d100 0000 00d0 000d

 viewing based on synthetic camera analogy. Specifying an arbitrary 3D view

By selecting different viewing parameters, user can position the synthetic camera. View reference point View-up vector View plane

Effect of change of viewing parameters  Imagine a string tied to „view reference point‟ on one end and to the synthetic camera on the other end.  By changing viewing parameters, we can swing the camera through the arc or change the length of the string. - changing the view distance is equivalent to how far away from the object the camera is when it takes the picture. - changing the view reference point will change the part of the object that is shown at the origin.

Cont. - changing the view plane normal is equivalent to taking photograph of object from different orientations. - changing view-up is equivalent to twisting the camera in our hands. It fixes the camera angle.

View Volume - The view volume bounds that portion of the 3D space that is to be clipped out and projected onto the view plane.

View Volume for Perspective Projection - its shape is semi-infinite pyramid with apex at the view point and edge passing through the corners of the window. cop View window Front clipping plane Back clipping plane Frustum view volume

View Volume for Parallel Projection -It's shape is an infinite parallelepiped with sides parallel to the direction of projection. Parallelepiped Viewed volume View window Front clipping plane Back clipping plane

Producing a Canonical view volume for a perspective projection cop View window Front clip Back clip View frustum centerlineGeneral shape for the Perspective View volume View volume

Step 1: shear the view volume so that centerline of the frustum is perpendicular to the view plane and passes through the center of the view window. Frustum centerline View volume

Step2: scale view volume inversely proportional to the distance from the view window, so that shape of view volume becomes rectangular parallelepiped. View volume

Converting object coordinates to view plane coordinates  similar to the process of rotation about an arbitrary axis zw Yw xw World coordinate system Yv Xv VRP View plane (eye) coordinate system

Steps: 1. Translate origin to view reference point (VRP). 2. Translate along the view plane normal by view distance. 3. Align object coordinate‟s z-axis with view plane coordinates z- axis (the view plane normal). a)- Rotate about x-axis to place the line (ie. Object coordinates z-axis) in the view plane coordinates xz-plane. b)- Rotate about y-axis to move the z axis to its proper position. c)- Rotate about the z-axis until x and y axis are in place in the view plane coordinates.

Ref: „Computer Graphics‟ by S. Harrington (pp. 279-284)

Add a comment

Related presentations

Art Portffolio of Tyron Shi

Art Portffolio of Tyron Shi

November 5, 2014

the Creative Portfolio of 14 year old Tyron Shi, RHS student at Rye, New York.

may las vacation



November 8, 2014

An Iterative Story determined by readers votes. Mugwhah is the story of a wi...

A selection of artistic impressions by David Crighton inspired by his admiration f...



October 30, 2014


The importance-of-reading-for-gifted-children

Related pages

3-D Viewing - How 3-D Glasses Work | HowStuffWorks

3-D Viewing - NASA’s Mars rovers are sending 3-D images to Earth, so we can see depth and texture on the surface of Mars using 3-D glasses!
Read more

3D film - Wikipedia, the free encyclopedia

... 3D film or S3D film) [1] is a motion ... to provide the illusion of depth when viewing the ... a horror star as well as the "King of 3-D" after he ...
Read more

How to View 3D - Lock Haven University of Pennsylvania

HOW TO VIEW 3D WITHOUT GLASSES ... You'll actually see two 3-D images, ... Old-fashioned Holmes stereoscopes had prismatic lenses to allow viewing pictures ...
Read more

Lösung - 3D CAD Viewing für Einzelplätze

Die 3DViewStation Desktopversion ist der leistungsstarke 3D-CAD-Viewer für alle Nutzer von 3D-CAD-Daten, die hohe Performance und eine reichhaltige ...
Read more

3-D Viewing without Goofy Glasses | MIT Technology Review

3-D Viewing without Goofy Glasses. Philips’s new displays bring high-quality, 3-D images a step closer to your living room. By John Borland on June 12, 2008
Read more

How to View 3D Pictures - Stereo Photography- The World in 3D

The photos on this site are primarily in a format that requires cross-eyed viewing. It sounds worse than it is, and most people can view 3D pictures in ...
Read more

3D Viewings

Created simply from existing photos and floor plan. See 3D Viewings on. YouTube
Read more

3D Viewing Transformation - Home | ACM SIGGRAPH

3D Viewing Transformation . 3D Camera Transformation . 3D Viewing Projections. Viewing Transformations HyperGraph Table of Contents. Last changed September ...
Read more

Sharp Offers 3-D Viewing Without Glasses - IEEE Spectrum

Sharp Offers 3-D Viewing Without Glasses The technology works best in small displays. By John Boyd Posted 12 Apr 2010 | 20:25 GMT. 9 April, 2010 ...
Read more

Computing the 3D Viewing Transformation - Trinity University

A method of computing the 3D viewing transformation which transforms the right-hand world coordinate system to left-hand eye coordinate system is presented.
Read more