advertisement

Аналог электроник /монгол/

40 %
60 %
advertisement
Information about Аналог электроник /монгол/
Education

Published on September 24, 2014

Author: batnyammaidarjav

Source: slideshare.net

Description

электроник
advertisement

1.1. Үндсэн ойлголтууд 1.1.1. Атомын бүтэц Дамжуулагч дундуур гүйх электроны урсгалын тухай мэдэхийн тулд атомын бүтцийн талаар мэдэх хэрэгтэй. Атомууд нь эерэг цэнэгтэй протон, цэнэггүй нейтрон, сөрөг цэнэгтэй электрон гэсэн 3 төрлийн бөөмөөс тогтох бөгөөд атом дахь эерэг сөрөг цэнэгтэй бөөмүүдийн тоо тэнцүү байх учраас бүхэлдээ цахилгаан саармаг байна. Эерэг цэнэгтэй бөөм болох протонууд нь атомын цөмд орших ба харин сөрөг цэнэгтэй бөөм болох электронууд нь цөмөөс 10-8см орчим зайд оршдог. Жишээ нь зураг 1.1-д 3 электрон, протонтой элементийг дүрслэв. зураг 1.1. Электронууд нь өөр өөрийн тодорхой орбитын дагуу төвөө тойрон эргэлдэх ба орбитыг хамгийн дотор талаас нь 1, 2, 3, г.м-ээр дугаарлана. Тухайн орбит дээр орших боломжтой электроны тоо болон орбитын дугаар нь хоорондоо 2n2 гэсэн хамааралтай. Энд n нь орбитын дугаар, 2n2 нь тухайн орбит дээр орших боломжтой электроны тоо. Мөн тухайн орбит дээр орших электроны энерги нь орбитоосоо шууд хамаарах бөгөөд орбитын дугаар багасах тусам тухайн орбит дээр орших электроны энерги бага байна. Иймээс электронууд аль болох дотор талын орбитуудад байрлах эрмэлзэлтэй байдаг. Учир нь аль ч тогтвортой систем аль болох бага энергитэй байх тэр төлөвт орших эрмэлзэлтэй байна. Иймээс электронууд нь 1-р орбит дээр 2⋅12=2, 1 ба 2-р орбит дээр 2⋅22=8, 1, 2, 3-р орбит дээр 2⋅32=18 г.м-ээр хамгийн бага орбитоосоо эхлэн электроноор дүүрсэн байх ба хамгийн гадна талын орбитыг валентын орбит гэнэ. Валентын орбит дээр орших электронуудыг валентын электрон гэж ч нэрлэх явдал байдаг. Энэхүү валентын орбит дээр орших электронууд нь тухайн элементийн цахилгаан соронзон харилцан үйлчлэлийн шинж чанарыг тодорхойлдог. Бодисыг цахилгаан дамжуулах чадвараар нь цахилгааныг маш сайн дамжуулдаг дамжуулагч, цахилгааныг огт дамжуулдаггүй тусгаарлагч, цахилгаан дамжуулал нь температураас шууд хамаардаг хагас дамжуулагч гэж гурав ангилж болно. 1.1.2. Дамжуулагч Цахилгааныг маш сайн дамжуулдаг бодисыг дамжуулагч гэнэ. Энэ нь түүнийг бүтээгч атомын бүтэцтэй холбоотой. Дамжуулагчийн хувьд хамгийн гадна талын буюу валентын орбит дээр орших электроны тоо нь ихэвчлэн 1 байна. Иймээс валентын 1 электронтой атомууд энэхүү 1 электроноо алдах, харин 1 электрон дутуу атомууд гаднаас 1 электрон шингээн авах эрмэлзэлтэй байдаг. Иймд дамжуулагчийн хувьд хамгийн гадна талын орбитын электрон нь атомаас сугарч гарч атомаас хамааралгүй чөлөөт электрон болох боломжтой. /зураг 1.2/. Иймээс дамжуулагч дотор чөлөөт электронууд олноор байдаг байна. Энэхүү чөлөөт электрон гэдэгт дараах 2 зүйлийг ойлгоно. Нэгдүгээрт дамжуулагч дотор ямар ч атомаас хамааралгүй сул чөлөөтэй электронууд олноор байдаг. Хоёрдугаар дамжуулагч доторх чөлөөт электрон нь дамжуулагч дотуур чөлөөтэй шилжин хөдлөх боломжтой байна. Өөрөөр хэлбэл дамжуулагч доторх сул электронууд байдаг бөгөөд тэдгээр нь сул чөлөөтэй хөдлөх боломжтой байдаг нь дамжуулагчаар гүйдэл гүйх боломжийг олгоно. зураг 1.2. Цагаан алт, алт, мөнгө зэрэг металлууд нь цахилгааныг сайн дамжуулагчид тооцогддог. Эдгээрийг жижиг хэмжээтэй, өндөр хүчин чадалтай микроэлектроникийн багаж, хиймэл дагуулын дамжуулагч элементүүд, компьютерийн микросхем зэрэг зүйлүүдийг хийхэд ашигладаг. 1

Хамгийн хямдхан үнэтэй дамжуулагчид зэс, хөнгөн цагаан орно. Иймээс ихэнх цахилгаан дамжуулагчид эдгээрийг ашиглана. 1.1.3. Цахилгаан гүйдэл Цахилгаан гүйдэл нь цэнэгтэй бөөмсийн нэгэн зүгт жигдрэн хөдөлсөн хөдөлгөөнийг хэлнэ. Өөрөөр хэлбэл дамжуулагч дундуур цэнэгтэй бөөмс тодорхой чиглэлийн дагуу зөөгдөхийг ойлгоно. /зураг 1.3/ зураг 1.3. Гүйдлийг ампер гэдэг нэгжээр үнэлэх бөгөөд ампер нь нэгж хугацаанд дахь цэнэгийн өөрчлөлтөөр тодорхойлогдоно. tQi∂ ∂ = []⎥⎦ ⎤ ⎢⎣ ⎡= sq1A1 1mA=10-3A 1μA=10-6A 1nA=10-9A 1pA=10-12A Дамжуулагчаар гүйх гүйдлийн чиглэлийг түүн доторх эерэг цэнэгтэй бөөмсийн шилжилтээр тодорхойлдог учраас гүйдлийн чиглэлийг электроны урсгалын эсрэг чиглэлд авна. Дамжуулагчаар гүйдэл гүйх үед дамжуулагч халдаг. Энэ нь тухайн дамжуулагчаар гүйх гүйдэл буюу электроны урсгалд дамжуулагчийн атомуудын зүгээс саад учруулж байгаатай холбоотой. 1.1.4. Эсэргүүцэл Дамжуулагчаар гүйдэл гүйх үед түүнд дамжуулагчийн атомуудын зүгээс учруулах саадыг эсэргүүцэл гэдэг хэмжигдэхүүнээр тодорхойлно. Цахилгааныг сайн дамжуулдаг цагаан алт, алт, мөнгө зэргийн хувьд энэ эсэргүүцэл нь туйлын бага байна. Өөрөөр хэлбэл материалын эсэргүүцэл багасах тусам тухайн материал цахилгааныг сайн дамжуулна. Жишээлбэл зэс нь хөнгөн цагаанаас эсэргүүцэл багатай тул зэс хөнгөн цагаантай харьцуулахад цахилгааныг сайн дамжуулна. Эсэргүүцлийг ом гэдэг нэгжээр үнэлнэ. Дамжуулагчийн эсэргүүцэл нь дамжуулагчийн хөндлөн огтлолтой урвуу, дамжуулагчийн урттай шууд хамааралтай. Иймээс ижил материалаар хийсэн, ижил хөндлөн огтлолтой дамжуулагчуудын хувьд урт нь эсэргүүцэл ихтэй, харин ижил материалаар хийсэн, ижил урттай дамжуулагчуудын хувьд хөндлөн огтлол ихтэйн эсэргүүцэл багатай байна. Иймээс дамжуулагчийн эсэргүүцэл нь SLR•ρ= энд L–дамжуулагчийн урт, S–дамжуулагчийн хөндлөн огтлол, ρ – коэффицентийг дамжуулагчийн хувийн эсэргүүцэл гэнэ. 1ohm=1Ω 1kohm=103ohm 1Mohm=106ohm 1.1.5. Тусгаарлагч Тусгаарлагчид дамжуулагчийн эсрэг шинж чанартай материалуудыг ойлгоно. Тэдгээрүүдийн атомаас электроныг сугалан гаргах амаргүй тул тусгаарлагч бодисууд дотор чөлөөт электрон байдаггүй. Иймээс тусгаарлагч гэдэгт дараах хоёр зүйлийг ойлгоно. Нэгдүгээрт тусгаарлагч дотор дамжуулагчтай адилхан чөлөөт электронууд байдаггүй. Хоёрдугаарт тусгаарлагч дотуур чөлөөт электрон шилжин хөдлөх боломжгүй. Иймд тусгаарлагч нь цахилгааныг дамжуулдаггүй бөгөөд тусгаарлагчийг цахилгааны гүйлдлийн урсгалд саад хийх зорилгоор ашиглана. 1.1.6. Чадал Нэгж хугацаанд цахилгаан гүйдлийн хийх ажлыг чадал гэдэг нэгжээр хэмжинэ. Өөрөөр хэлбэл гүйдлээр тодорхой энерги зөөгдөх бөгөөд энэ энергийг тодорхойлдог хэмжигдэхүүнийг чадал гэнэ. Гүйдлээр зөөгдөх цахилгаан энергийг энергийн өөр хэлбэрт шилжүүлэн ашиглаж болно. Жишээлбэл гэрэл, дулааны энерги болгох г.м. Энэ чанарыг ашиглан энгийн чийдэнг хийдэг. /зураг 1.4/ Чадлыг ватт /watt/ гэдэг нэгжээр үнэлнэ. P=V⋅I [1W]=[1V⋅1A] 2

зураг 1.4. 1.1.7. Хүчдэл Хүчдэл нь чөлөөт электронуудыг нэг цэгээс нөгөө цэгт зөөхөд зориулагдсан энергийг тодорхойлдог хэмжигдэхүүн. Өөрөөр хэлбэл дамжуулагчийн хоёр төгсгөлд энергийн ялгааг бий болгоход дамжуулагч доторх электронууд энерги багатай тал уруу хөдөлснөөр дамжуулагчаар гүйдэл гүйх болно. Энэ энергийн ялгааг потенциалын ялгавар буюу хүчдэл гэнэ. 1.1.8. Дамжуулагчийн хүчдлийн хязгаар Дамжуулагчаар гүйх гүйдлийн үед дамжуулагчийн өөр дээрээ унагах хамгийн их хүчдлийн хэмжээг хүчдлийн хязгаар гэнэ. Энэ нь дараах 3 зүйлтэй холбоотой. ƒ Тухайн дамжуулагчийг хийсэн материалын төрөл. Жишээлбэл адилхан урт өргөнтэй зэс ба хөнгөн цагааныг харьцуулан үзвэл зэс нь цахилгаан дамжуулах чадвар сайтай буюу эсэргүүцэл багатай тул зэс дамжуулагчийн даах хүчдлийн хязгаар нь хөнгөн цагааныхаас бага байна. ƒ Дамжуулагчийн хөндлөн огтлол. Ижил урттай дамжуулагчуудын хувьд хөндлөн огтлол ихтэй дамжуулагчийн эсэргүүцэл нь бага байх тул хөндлөн огтлол ихтэй нь багатайгаасаа хүчдлийн даах хязгаар нь бага байна. ƒ Дамжуулагчийн урт. Адилхан хөндлөн огтлолтой нэгэн төрлийн дамжуулагчуудын хувьд богинынх нь эсэргүүцэл бага байх тул богино нь уртаасаа хүчдлийн даах хязгаар нь бага байна. Дамжуулагчийн хүчдлийн хязгаарыг тогтоохдоо тэжээлийн үүсгүүр дээрх хүчдэл болон дамжуулагчийн төгсгөлүүд дээрх хүчдлүүдийг хэмжиж харьцуулах замаар гаргана. /зураг 1.5/ зураг 1.5. 1.1.9. Тогтмол гүйдэл – dc (direct current) Дамжуулагчаар нэг чиглэлд тогтмол гүйх цэнэгтэй бөөмсийн урсгалыг тогтмол гүйдэл гэнэ. /зураг 1.6/ зураг 1.6. Иймээс тогтмол гүйдэл нь хугацаанаас хамааран өөрчлөгддөггүй бөгөөд ийм гүйдэл үүсгэгчийн жишээ нь баттерей. 3

1.1.10. Хувьсах гүйдэл – alternating current (ac) Хугацаанаас хамааран өөрчлөгддөг гүйдлийг хувьсах гүйдэл гэх бөгөөд ийм гүйдэл үүсгэгчийн жишээ нь хувьсах гүйдлийн генератор. Хувьсах гүйдлийг гарган авах үндсэн 2 арга байдаг. Үүний эхнийх нь дамжуулагч жаазан дотор тогтмол соронзонг эргүүлэх замаар хувьсах гүйдлийг гарган авах болно. /зураг 1.7/ зураг 1.7. Өөрөөр тогтмол соронзон оронд жаазыг эргүүлэх замаар хувьсах гүйдлийг гарган авна. /зураг 1.8/ зураг 1.8. Хувьсах гүйдлийг гарган авдаг дээрх аргууд нь Фарадейн хуульд үндэслэгдэнэ. 1.1.11. Фарадейн хууль Дамжуулагчийн битүү хүрээгээр нэвтрэн өнгөрөх соронзон орны урсгал өөрчлөгдсөнөөр дамжуулагчид индукцийн цахилгаан хөдөлгөгч хүч үүссэний улмаас дамжуулагчаар гүйдэл гүйхийг цахилгаан соронзон индукцийн үзэгдэл гэнэ. Энэ үед үүсэх цахилгаан хөдөлгөгч хүчийг индукцийн цахилгаан хөдөлгөгч хүч гэж нэрлэх бөгөөд энэ нь соронзон урсгалын өөрчлөлтийн хурдтай шууд хамааралтай байна. tVind∂ Φ∂ = Хэрэв дамжуулагч нь ороомог байх юм бол энэ үед үүсэх хүчдэл нь дараах томъёогоор илэрхийлэгдэнэ. Энд N нь ороомгийн ороодсын тоо. tNVind∂ Φ∂ ⋅= Энэхүү индукцийн цахилгаан хөдөлгөгч хүчний нөлөөгөөр гүйх гүйдлийн чиглэлийг Ленцийн дүрмээр тодорхойлно. 4

1.1.12.Ленцийн дүрэм Индукцийн гүйдэл нь өөрийгөө үүсгэж байгаа соронзон орны эсрэг чиглэлтэй соронзон оронг үүсгэж байхаар чиглэнэ. 1.1.13.Өөрийн индукцлэл Дамжуулагчаар гүйх гүйдэл өөрчлөгдөхөд индукцийн цахилгаан хөдөлгөгч хүч үүсдэг. Үүнийг өөрийн индукцлэл гэнэ. Өөрөөр хэлбэл хэлхээг хүчдэл үүсгүүрт залгах болон салгахад гүйдлийн хүч өөрчлөгдсөнөөс өөрийн индукцлэл үүсдэг. Энэ үед үүсэх цахилгаан хөдөлгөгч хүч нь дараах томъёогоор илэрхийлэгдэнэ. Энд L нь индукцлэл. tiLVL∂ ∂ ⋅= 1.1.14.Далайц, үе, давтамж Хамгийн энгийн хувьсах гүйдлийн жишээ нь синусойд гүйдэл. зураг 1.9. Өөрөөр хэлбэл синусойд гүйдлийн хүчдэл ба гүйдэл нь синусийн хуулиар өөрчлөгдөнө. /зураг 1.9/ i = ipsinθ v = vpsinθ Peak voltage — үндсэн төвшин (baseline)-өөс максимум хүртлэх утгыг хүчдлийн далайц гээд Vp гэж тэмдэглэнэ. /зураг 1.10/ зураг 1.10. зураг 1.11. Peak to peak — хүчдлийн максимумаас минимум хүртлэх утгыг нийт далайц буюу бүтэн далайц гээд Vp-p гэж тэмдэглэнэ. /зураг 1.11/ Vp-p = 2⋅Vp Vp = 0.5⋅Vp-p Root-Mean-Square (RMS) Voltage — эффектив буюу үйлчлэгч утга нь далайцын 0,707 хувьтай тэнцүү утгыг илэрхийлнэ. /зураг 1.12/ Зарим хэмжигч багажууд хувьсах гүйдэл болон хүчдлийн эффектив утгыг хэмждэг тул практикт энэ утга нь чухал ач холбогдолтой. Хүчдэл болон гүйдлийн энэ утгыг U ба I гэсэн үсгээр тэмдэглэдэг. Vrms = 0.707⋅Vp Vp =1.414⋅Vrms зураг 1.12. зураг 1.13. Average Voltage — дундаж хүчдэл нь далайцын 0,637-той тэнцүү утгыг илэрхийлнэ. /зураг 1.13/ Vave = 0.637⋅Vp Vp =1.57⋅Vave 5

Period — үе нь сигналын хэлбэр нэг бүтэн давтагдах хугацаа юм. /зураг 1.14/ Үеийг Т гэж тэмдэглэх бөгөөд нэгж нь секунд. 1milliseconds(ms)=10-3s 1microseconds(μs)=10-6s зураг 1.14. зураг 1.15. Frequency — давтамж нь сигналын хэлбэр 1 секундэд хэдэн удаа давтагдахыг илэрхийлнэ. /зураг 1.15/ Давтамжийг f үсгээр тэмдэглэх бөгөөд нэгж нь герц. 1kiloHertz(kHz)=103Hz 1MegaHertz(MHz)=106Hz 1GigaHertz(GHz)=109Hz. Давтамж үе хоёр нь дараах хамааралтай. T1f= f1T= ƒ AC Power — хувьсах гүйдлийн чадал нь хүчдэл, гүйдлийн үржвэрээр тодорхойлогдох бөгөөд доорх хувьсах гүйдлийн жишээнд чадлын диаграммыг үзүүлэв. /зураг 1.16/ p = i⋅v зураг 1.16. ƒ Average AC Power — дундаж чадал буюу Pave нь дараах томъёогоор тодорхойлогдоно. /зураг 1.17/ Pave = IRMS x VRMS зураг 1.17. зураг 1.18. Хувьсах гүйдлийн бусад төрлүүд Тэгш өнцөгт /зураг 1.18/ RMS=PEAK AVG=PEAK P-P=2PEAK зураг 1.19. Гурвалжин /зураг 1.19/ RMS=0.577PEAK AVG=0.5PEAK P-P=2PEAK Дурын /зураг 1.20/ RMS=? AVG=? 6

зураг 1.20. P-P=2PEAK 1.1.15. Хэлхээ Хамгийн энгийн хэлхээ нь дараах гурван үндсэн хэсгээс тогтно. ƒ Тэжээлийн үүсгүүр. Тогтмол болон хувьсах гүйдлийн үүсгүүрүүд ƒ Дамжуулагч утас. Үүсгүүрээс гарч ачаанд очоод эргэн үүсгүүрт буцаж ирэхэд зориулагдсан дамжуулагч утас. ƒ Цахилгаан энергийг ашиглахад зориулагдсан ямар нэгэн ачаа. Жишээ нь чийдэн. /зураг 1.21/ зураг 1.21. Үүнээс гадна туслах чанарын хамгаалалтын ба хяналтын гэсэн нэмэлт элементийг ашиглана. /зураг 1.22/ зураг 1.22. Жишээ нь сэнсийн хэрхэн ажилладагийг үзье. /зураг 1.22/ Энд хамгаалалтын элемент нь хэлхээнд тэжээл өгөх эсэхийг шийддэг цахилгаан хяналтын самбар. Харин хяналтын элемент нь гүйлдлийн урсгалыг хянах зориулалттай термостат болон унтраалга байна. Жишээлбэл хяналтын элементүүдийг ямар зорилгоор хийдгийг авч үзье. Ихэнх ийм элементүүд нь хэлхээг салгах зориулалттай байна. /зураг 1.23/ зураг 1.23. Хяналтын элементүүдийг дамжуулагчаар хэт их гүйдэл гүйснээс ачааг хэт халахаас сэргийлэх зорилготой switch буюу унтраалга, термостат зэрэг элементүүдээр хийнэ. Иймээс ихэнх тохиолдолд амархан хайлдаг элементийг энд ашиглана. Үүнээс гадна хэлхээг цуваа, зэрэгцээ, нээлттэй, богино холболт г.м-ээр ангилж болно. 1.1.16. Цуваа хэлхээ Цуваа хэлхээний жишээ нь сүлд модны чимэглэлийн гэрэл. /зураг 1.24/ зураг 1.24. Гүйдэл дамжуулагч салаалалгүй ачаануудыг гүйдэл үүсгэгчид холбож байвал уг хэлхээг цуваа гэнэ. Иймээс хэлхээ аль нэг газраа тасрахад хэлхээ бүрэн тасарна. 7

120 вольтын хувьсах гүйдлийн үүсгүүр, унтраалга, нэг чийдэнгээс тогтсон энгийн цуваа хэлхээг үзье. /зураг 1.25/ Унтраалга нээлттэй (салгаатай) үед хэлхээ тасарч хэлхээгээр гүйдэл гүйхгүй. Харин унтраалга хаалттай (залгаатай) үед хэлхээ битүүрч чийдэн асна. зураг 1.25. Дээрх хэлхээнд ахиад нэг чийдэнг цуваа холбоё. /зураг 1.26/ Энэ үед хэлхээний эсэргүүцэл 2 дахин ихэснэ. Иймээс гүйдэл 2 дахин буурч чийдэн болгон дээр 60 вольтын хүчдэл унах болно. Иймээс чийдэнгийн гэрэлтэлт багасна. зураг 1.26. Дээрх хэлхээнд дахин нэг чийдэнг цуваагаар холбоё. /зураг 1.27/ Энэ үед хэлхээний эсэргүүцэл нэг чийдэнтэй байсан үеэс 3 дахин ихэснэ. Ингэснээс гүйдэл 3 дахин буурч чийдэн болгон дээр 40 вольт хүчдэл унана. Иймээс чийдэнгүүдийн гэрэлтэлт улам багасна. зураг 1.27. 1.1.17. Зэрэгцээ хэлхээ Зэрэгцээ хэлхээний гүйдэл дамжуулагч хэд хэд салаасан байна. Жишээлбэл дараах 2 чийдэнг зэрэгцээ хэлхээ холбосон хэлхээг үзье. /зураг 1.28/ Хэлхээнд хэчнээн чийдэн холбосноос чийдэнгийн гэрэлтэлт өөрчлөгдөхгүй, учир чийдэн болгон дээр унах хүчдэл адилхан байна. зураг 1.28. 3 чийдэнг хооронд зэрэгцээ холбоё. /зураг 1.29/ Энэ үед чийдэн тус бүр дээр унах хүчдэл өөрчлөгдөхгүй, харин тус бүрээр гүйх гүйдэл нэг чийдэнтэй байх үеийнхтэй адилхан бахй тул чийдэнгийн гэрэлтэлт багасахгүй. зураг 1.29. 8

1.1.18. Нээлттэй хэлхээ Хэлхээний дамжуулагч утас аль нэг газраа тасарсан эсвэл хэлхээ аль нэг газраа тасарсан бол хэлхээг нээлттэй (задгай) хэлхээ гэнэ. /зураг 1.30/ Ийм хэлхээний хувьд хэлхээгээр гүйдэл гүйхгүй. зураг 1.30. 1.1.19. Богино холболт Хэлхээнд шаардлагатай ачааг холбоогүй хэлхээг богино холболт гэнэ. /зураг 1.31/ Богино холболтын үед дамжуулагч утсаар хэт их гүйдэл гүйсний улмаас дамжуулагч хайлдаг. Дамжуулагчаар гүйх гүйдэл ихсэхэд дамжуулагч дээр унах хүчдэл нэмэгдэх бөгөөд энэ нь дамжуулагчийн дааж чадах хүчдлийн хязгаараас давбал дамжуулагч хайлна. Ерөнхий тохиолдолд дамжуулагч дээр унах хүчдэл нь түүн дээр унах хүчдлийн хязгаараас 3-5%-аар хэтэрвэл дамжуулагч хайлна. зураг 1.31. 1.2. Хэлхээний элементүүд 1.2.1. Резистор Дамжуулагчаар гүйдэл гүйх үед түүний атомуудын зүгээс электроны урсгалд саад болох эсэргүүцлийн тухай өмнөх бүлэгт үзсэн билээ. Тэгвэл дамжуулагчийн энэ чанар дээр үндэслэгдэн хийгдсэн гүйдлийн хүчийг хязгаарлах зориулалттай элементийг резистор гэнэ. Резисторыг хэлхээнд дүрсээр тэмдэглэнэ. Резисторын нэгж нь Ohm, 103Ohm=1kOhm 106ohm=1Мohm. Мөн үүнээс гадна хазайлт (эсэргүүцлийн номиналь утгаасаа хазайх зөвшөөрөгдсөн хазайлт), чадал (эсэргүүцлийн дааж чадах хамгийн их чадал), температурын коэффицент (температурыг 1 градусаар өөрчлөгдөхөд эсэргүүлцийн хэмжээ хэрхэн өөрчлөгдөхийг харуулсан параметр), максимум температур (чадлын номиналь утга өөрчлөгдөхгүй байх хамгийн их температурын хэмжээ) зэрэг параметрүүдийг ашигладаг. Резистор дээр унах хүчдэл, түүгээр гүйх гүйдэл, эсэргүүцлийн хэмжээ 3 хоорондоо дараах хамааралтай. V=R⋅I Карбон болон металл ялтсаар хийсэн резисторууд хамгийн өргөн ашиглагдана. 1.2.2. Резисторын төрлүүд Карбон ялтсан резистор - Carbon film resistor Хамгийн өргөн хэрэглэгддэг, ±5%-ийн алдаатай (tolerance), 1/8W, 1/4W, 1/2W чадалтай. Муу тал нь шумыг үүсгэдэг. /зураг 1.32/ зураг 1.32. чадал (w) өргөн (мм) урт (мм) 9

1/8 2 3 ¼ 2 6 ½ 3 9 Single-In-Line(SIL) resistor Олон резисторүүдийн цуглуулга. /зураг 1.33/ 4S төрлийн гэж нэрлэгддэг хувилбартай. /зураг 1.34/ 9 хөлтэй, зузаан 1.8 mm, өндөр 5mm, өргөн 23 mm. Мөн 8 хөлтэй, 1.8 mm, 5 mm, 20 mm хувилбартай. зураг 1.33. зураг 1.34. Металл ялтсан резистор - Metal film resistor ±0.05% tolerance-тай, Ni-Cr (Nichrome) металлыг ашигласан, гүүр болон фильтрт ашигладаг, аналог сигналд бага хэмжээний шумыг нэмдэг. /зураг 1.35/ 1/8W (tolerance ±1%) 1/4W (tolerance ±1%) 1W (tolerance ±5%) 2W (tolerance ±5%) зураг 1.35. чадал (w) өргөн (мм) урт (мм) 1/8 2 3 ¼ 2 6 1 3,5 12 2 5 15 Хувьсах резистор - Variable Resistor Эсэргүүцлийнх хэмжээг нь өөрчлөх боломжтой резисторууд. /зураг 1.36/ Потенциаметр гэж зарим тохиолдолд нэрлэнэ зураг 1.36. CDS Element Зарим элементүүд гэрлийн нөлөөгөөр эсэргүүцлээ өөрчилдөг. Тухайлбал Cadmium Sulfide Photocell. Энэ элемент нь гэрлийн нөлөөгөөр эсэргүүцлээ 200 ом-оос 2 Мом хүртэл өөрчлөх чадвартай. /зураг 1.37/ зураг 1.37. Керамик резистор - Ceramic resistor Керамик гадаргуутай, цемент ашигласан, өндөр хүчдлийн тэжээлд ашиглагддаг. /зураг 1.39/ зураг 1.38. Керамик болон цемент ашигласан резистор /зураг 1.38/ зураг 1.39. 10W, урт 45 mm, зузаан 13 mm 50W, урт 75 mm, зузаан 29 mm 10

5W өндөр 9 mm, зузаан 9 mm, өргөн 22 mm Термистор - Thermistor ( Thermally sensitive resistor ) Температурын нөлөөгөөр эсэргүүцлээ өөрчилдөг резистор. /зураг 1.40/ зураг 1.40. 1.2.3. Резисторын өнгөний код Жишээ 1 /зураг 1.41/ (бор=1),(хар=0),(шаргал=3) 10 x 103 = 10kohm хазайлт(алтлаг шар) = ±5% зураг 1.41. зураг 1.42. Жишээ 2 /зураг 1.42/ (шар=4), (хөх ягаан=7), (хар=0), (улаан=2) 470 x 102 = 47k ohm хазайлт(бор) = ±1% өнгө утга үржүүлэгч хазайлт хар 0 0 - бор 1 1 ±1 улаан 2 2 ±2 шаргал 3 3 ±0.05 шар 4 4 - ногоон 5 5 ±0.5 хөх 6 6 ±0.25 хөх ягаан 7 7 ±0.1 саарал 8 8 - цагаан 9 9 - алтлаг шар - -1 ±5 мөнгөлөг - -2 ±10 - - - ±20 1.2.4. Ороомог Дамжуулагчаар гүйх гүйдэл өөрчлөгдөх үед түүнд индукцийн цахилгаан хөдөлгөгч хүч үүсэх болон түүний эргэн тойронд хувьсах соронзон орон үүсдэг зэрэг физик үзэгдлүүд ажиглагдана. Дамжуулагчаар гүйдэл гүйх үед ажиглагдах эффектүүд дамжуулагчийн хэлбэр хэмжээнээс хамаарах бөгөөд хэрэв дамжуулагчийг ороомог хэлбэртэй болговол эдгээр эффектүүд улам ихэснэ. Жишээлбэл: 1. Реле - Relay Ороомгоор гүйдэл гүйхэд түүнд соронзон орон үүсдэг. Ингэж үүсгэсэн соронзон орон нь энгийн соронзон оронтой адилхан шинж чанартай байдаг. Иймээс никель, төмөр болон бусад ферросоронзон металлыг өөртөө татдаг. Ороомгийн энэ шинж чанарыг нь ашиглан реле гэж нэрлэгддэг төхөөрөмжийг хийнэ. Хамгийн энгийн релен жишээ бол ороомгоор гүйдэл гүйх үед хаагдаж, бусад үед нээлттэй байдаг switch (түлхүүр). /зураг 1.43/ 11

зураг 1.43. 2. Резонанс – Resonance Ороомог болон конденсатор ашигласан хэлхээгээр гүйх гүйдлийн давтамжийн тодорхой нэг утганд резонансыг үүсгэх буюу энэ үед хэлхээгээр гүйх гүйдэл гэнэт ихсэх (цуваа хэлхээний хувьд) эсвэл гэнэт багасдаг (зэрэгцээ хэлхээний хувьд). /зураг 1.44/ зураг 1.44. 3. Трансформатор Ороомгоор хувьсах гүйдлийг дамжуулахад түүний эргэн тойронд үүссэн хувьсах соронзон орны нөлөөгөөр түүнтэй зэрэгцээ байрлах ороомогт хувьсах цахилгаан орон үүсэж гүйдэл гүйдэг. Ороомгийн энэ шинж чанарыг ашиглан трансформаторыг хийдэг. /зураг 1.45/ Ороомгийн дотор ферросоронзон бодисоор хийсэн зүрхэвчийг хийвэл индукцлэл улам ихэсдэг г.м зураг 1.45. Ороомгийг хэлхээнд гэж тэмдэглэнэ. Нэгж нь индукцлэл: Герц - Henry (Hz). Үүнээс гадна хазайлт (ороомгийн индукцлэл номиналь утгаасаа хазайх зөвшөөрөгдсөн хазайлт), эффектив индукцлэл (ороомгийн дотоод багтаамжийн нөлөөг тооцсон индукцлэл), температурын муж (ороомог хэвийн ажиллах хамгийн их ба бага температур) зэрэг параметрүүд байдаг. Ороомог дээр унах хүчдэл, индукцлэл, түүгээр гүйх гүйдэл 3 дараах хамааралтай. tiLV∂ ∂ ⋅= Ороомог дээрх хүчдэл нь түүгээр гүйх гүйдлээс π/2 фазаар хоцордог. Иймээс ороомог дээр унах чадал нь дараах хэлбэртэй байна. /зураг 1.46/ зураг 1.46. 12

1.2.5. Ороомгийн индукцлэл Ороомгийг хэлхээнд цуваагаар холбовол нийт индукцлэл нь дараах томъёогоор тодорхойлогдоно. /зураг 1.47/ L = L1 + L2 + L3 + ... + Ln зураг 1.47. Ороомгийг хэлхээнд зэрэгцээгээр холбовол нийт индукцлэл нь дараах томъёогоор тодорхойлогдоно. /зураг 1.48/ 1n321L1L1L1L1L− ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ++++=K зураг 1.48. 1.2.6. Ороомгийн эсэргүүцэл буюу индукцлэлийн эсэргүүцэл Inductive Reactance — индукцлэлийн эсэргүүцэл нь ороомог дээр унах эсэргүүцлийн хэмжээг тодорхойлно. LLLiVX= Энэ нь ороомгоор гүйх гүйдлийн давтамжаас хамаарах бөгөөд тогтмол гүйдэлд тэгтэй тэнцүү байна. Өөрөөр хэлбэл индукцлэлийн эсэргүүцэл нь давтамж болон индукцлэлээс шууд хамааралтай. /зураг 1.49/ XL = 2π⋅f⋅L зураг 1.49. Ороомгийг хэлхээнд цуваа холбосон тохиолдолд нийт индукцлэлийн эсэргүүцэл: XL = XL1 + XL2 + XL3 + ... + XLn Ороомгийг хэлхээнд зэрэгцээ холбосон тохиолдолд нийт индукцлэлийн эсэргүүцэл: 1Ln3L2L1LLX1X1X1X1X− ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ++++=K 1.2.7. Өөрийн индукцлэл 1.1.13-ийг үз. Ороомог болон резисторыг цуваа холбосон RL хэлхээний хувьд дараах хэмжигдэхүүнийг RL хугацааны тогтмол гэнэ. RL=τ RL хэлхээг тогтмол хүчдэлд залгахад /зураг 1.50/ өөрийн индукцийн улмаас хэлхээгээр гүйх гүйдлийн утга шууд максимум утгандаа хүрэхгүй. зураг 1.50. Харин гүйдэл дараах хуулийн дагуу ихэснэ. /зураг 1.51/ tiLRiV∂ ∂ ⋅+⋅= ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −⋅=τ−tSe1RV)t(i 13

τ iL 0 0 1 0.632 x V/R 2 0.865 x V/R 3 0.950 x V/R 4 0.981 x V/R зураг 1.51. 5 0.992 x V/R Хэрэв RL хэлхээг хүчдлээс салгавал /зураг 1.52/ хэлхээний гүйдэл шууд тэг утгандаа очихгүй өөрийн индукцийн улмаас дараах хуулиар буурна. /зураг 1.53/ tiLRi0∂ ∂ ⋅+⋅= τ− ⋅= teRV)t(i зураг 1.52. τ iL 0 V/R 1 0.368 x V/R 2 0.135 x V/R 3 0.050 x V/R 4 0.019 x V/R зураг 1.53. 5 0.008 x V/R 1.2.8. Ороомгийн төрлүүд Өндөр давтамжийн ороомгүүд Зүүн талаас: өндөр давтамжийн резонансийг үүсгэхэд ашиглагддаг. /зураг 1.54/ 1-р ороомог нь 100μH индукцлэлтэй ороомог. 2-р ороомог нь 470μH, өмнөхтэй адил үүрэгтэй. Сүүлийн 2 нь өндөр давтамжийн трансформаторууд зураг 1.54. зураг 1.55. Хувьсах ороомгууд /зураг 1.55/ FM радиод өргөн ашиглагддаг, ороодсынхоо тоог өөрчлөх боломжтой ороомгууд. Toroidal Coil /зураг 1.56/ Цагираг хэлбэртэй ороомгоос тогтно. Шулуун ороомгоос ороомгоор хувьсах цахилгаан гүйдэл дамжуулахад үүсэх соронзон орноороо ялгаатай. /зураг 1.57/ зураг 1.56. 14

зураг 1.57. 1.2.9. Конденсатор Конденсаторыг ихэвчлэн диэлектрикээр тусгаарлагдсан хоёр дамжуулагчаас тогтсон элемент гэж тодорхойлдог. /зураг 1.58/ зураг 1.58. Конденсаторыг хэлхээнд гэж тэмдэглэнэ. Нэгж нь багтаамж Farad. 1μF=10–6F 1nF=10–9F 1pF=10–12F Үүнээс гадна хазайлт, номиналь хүчдэл (конденсаторын дааж чадах хамгийн их хүчдлийн хязгаар) зэрэг параметрүүдийг хэрэглэнэ. Конденсаторын нэг дамжуулагч дээр нөгөөхөөс нь олон электрон цугларахыг конденсатор цэнэглэгдэх гэж ойлгоно. /зураг 1.59/ зураг 1.59. Конденсатор дээр унах хүчдэл, конденсаторт хуримтлагдах цэнэг, багтаамж гурав дараах хамааралтай. CQV= Хувьсах гүйдлийн хувьд конденсатор дээр унах хүчдэл нь түүгээр гүйх гүйдлээс π/2 фазаар түрүүлдэг. /зураг 1.60/ зураг 1.60. 15

1.2.10. Конденсаторын багтаамж Конденсаторыг хэлхээнд зэрэгцээ холбовол нийт багтаамж нь дараах томъёогоор тодорхойлогдоно. /зураг 1.61/ C = C1 + C2 + C3 + ... + Cn зураг 1.61. Конденсаторыг хэлхээнд цуваа холбовол нийт багтаамж нь дараах томъёогоор тодорхойлогдоно. /зураг 1.62/ 1n321C1C1C1C1C− ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ++++=K зураг 1.62. 1.2.11. Конденсаторын эсэргүүцэл буюу багтаамжийн эсэргүүцэл Сapacitive Reactance — багтаамжийн эсэргүүцэл буюу XС=VС/iС. Энэ нь давтамж болон багтаамжаас дараах хамааралтай. /зураг 1.63/ зураг 1.63. Конденсаторыг хэлхээнд цуваа холбосон тохиолдолд /зураг 1.64/ нийт багтаамжийн эсэргүүцэл: XС = XС1 + XС2 + XС3 + ... + XСn зураг 1.64. Конденсаторыг хэлхээнд зэрэгцээ холбосон тохиолдолд /зураг 1.65/ нийт багтаамжийн эсэргүүцэл: 1cccccn321X1X1X1X1X− ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ +++=K зураг 1.65. 1.2.12. Конденсатор цэнэглэгдэх болон цэнэгээ алдах Конденсатор болон резисторыг цуваа холбосон RС хэлхээний хувьд дараах хэмжигдэхүүнийг RС хэлхээний хугацааны тогтмол гэнэ. /зураг 1.66/ τ = R⋅С 16

зураг 1.66. RС хэлхээг тогтмол хүчдэлд залгахад конденсаторын цэнэглэгдэх процессын улмаас конденсатор дээрх хүчдэл шууд зохих утгандаа хүрдэггүй. /зураг 1.67/ зураг 1.67. Конденсатор дээрх хүчдэл хуулийн дагуу ихэснэ. Өөрөөр хэлбэл конденсатор дараах хуулиар цэнэглэгдэнэ. /зураг 1.68/ CQRiV+⋅= tQC1tiR0∂ ∂ ⋅+ ∂ ∂ ⋅= itiRC0+ ∂ ∂ ⋅= ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −=τ−tce1VV τ VC 0 0 1 0.632 x V 2 0.865 x V 3 0.950 x V 4 0.981 x V зураг 1.68. 5 0.992 x V Хэрэв RС хэлхээг хүчдлээс салгавал /зураг 1.69/ конденсатор резистороор дамжуулан цэнэгээ алдах бөгөөд конденсатор дээрх хүчдэл шууд тэг утгандаа очихгүй дараах хуулиар буурна. Өөрөөр хэлбэл конденсатор дараах хуулиар цэнэгээ алдана. /зураг 1.70/ CQRi0+⋅= tQC1tiR0∂ ∂ ⋅+ ∂ ∂ ⋅= itiRC0+ ∂ ∂ ⋅= τ− ⋅= tceVV зураг 1.69. 17

τ VC 0 V 1 0.368 x V 2 0.135 x V 3 0.050 x V 4 0.019 x V зураг 1.70. 5 0.008 x V Конденсаторыг тогтмол хүчдэлд залгахад конденсатор цэнэглэгдэх бөгөөд конденсаторыг цэнэглэгдсэний дараа хэлхээг салгавал конденсатор эсэргүүцлээр дамжуулан цэнэгээ алдана. /зураг 1.71/ зураг 1.71. Конденсаторыг хувьсах хүчдэлд залгахад конденсатор цэнэглэгдэх болон цэнэгээ алдах процессууд зэрэг явагдана. /зураг 1.72/ зураг 1.72. 1.2.13. Конденсаторын төрлүүд Электролитик конденсатор – Electrolytic Capacitor Хоорондоо нимгэн нүүрсэн мэмбранаар тусгаарлагдсан хөнгөн цагаан электродууд бүхий конденсатор. /зураг 1.73/ Хамгийн гол шинж чанар нь позитив болон негатив электродууд бүхий туйлтай. Хэрэв туйлуудыг хэлхээнд буруу холбовол шатна. Иймээс түүний позитив хэсгийг + тэмдгээр тэмдэглэсэн байдаг. 1μF-ээс хэдэн зуун μF цэнэг хуримтлуулах чадвартай. Энэ төрлийн кондукыг ихэвчлэн тэжээлийн хэлхээнд фильтр болгож эсвэл нам давтамжийн фильтр болгон ашиглана. зураг 1.73. Зүүн талаас баруун уруу: 1μF (50V) [диаметр 5 mm, өндөр 12 mm] 47μF (16V) [диаметр 6 mm, өндөр 5 mm] 100μF (25V) [диаметр 5 mm, өндөр 11 mm] 220μF (25V) [диаметр 8 mm, өндөр 12 mm] 1000μF (50V) [диаметр 18 mm, өндөр 40 mm] зураг 1.74. зүүн талаас: 0.33μF (35V), 0.47μF (35V), 10μF (35V) Танталум конденсатор - Tantalum Capacitors Туйлт конденсатор бөгөөд электродуудад танталум гэж нэрлэгддэг материалыг ашиглана. /зураг 1.74/ Өндөр температур, өндөр давтамжид ажиллах чадвартай. Хөнгөн цагаан электролитик конденсатораас давуу. 18

Керамик конденсатор - Ceramic Capacitor Титаний барийн хүчлийг диэлектрикт ашиглана. /зураг 1.75/ Энэ төрлийн кондукыг өндөр давтамжийн фильтрт ашиглана. Туйлт биш. Аналог хэлхээнд ашигладаггүй. Учир нь сигналын хэлбэрийг өөрчилдөг. зураг 1.75. зүүн талаас: 100pF diameter 3 mm. 103 (эх биен дээрх бичиг), 10x103pF буюу 0.01μF 6mm зураг 1.76. 104 (10x104pF=0.1μF) зузаан 2mm, өндөр 3mm, өргөн 4mm. 103 (10x103pF=0.01μF) өндөр 4mm, диаметр 2mm. Олон төвшинтэй керамик конденсатор - Multilayer Ceramic Capacitor Жижиг хэмжээтэй, олон төвшинтэй диэлектрикүүдээс тогтсон, өндөр температур ашиглахад тохиромжтой. өндөр давтамжийн фильтрт ашиглана. /зураг 1.76/ Олон үет ялтасаас тогтсон конденсатор - Polystyrene Film Capacitor Дотор тал нь ороомог хэлбэртэй учраас өндөр давтамжийн хэлхээнд ашигладаггүй. Бага давтамжийн фильтрт ашиглана. Туйлт биш. /зураг 1.77/ зураг 1.77. зүүн талаас: өндөр, зузаан 10mm, 5mm 100pF. 10mm, 5.7mm 1000pF. 24mm, 10mm 10000pF зураг 1.78. Давхар электрик үетэй конденсатор - Electric Double Layer Capacitors (Super Capacitors) 0.47 F (470,000 μF) диаметр 21 mm, өндөр 11 mm. Өндөр багтаамжтай тул тэжээлийн хэлхээнд ашиглана. /зураг 1.78/ Полистер ялтасан кондук - Polyester Film Capacitor Полистр ялтсыг диэлектрик болгон ашигласан туйлт бус конденсатор. /зураг 1.79/ 0.001μF (001K) өргөн 5mm, өндөр 10mm, зузаан 2mm 0.1μF (104K) 10mm, 11mm, 5mm 0.22μF (.22K) 13mm, 18mm, 7mm зураг 1.79. зураг 1.80. Зарим өөр төрлийн полистер конденсаторууд /зураг 1.80/ 0.0047μF (472K) 4mm, 6mm, 2mm 0.0068μF (682K) 4mm, 6mm, 2mm 0.47μF (474K) 11mm, 14mm, 7mm 19

Полипропилен конденсатор - Polypropylene Capacitors Полипропилен ялтсыг диэлектрик болгон ашигласан туйлт бус конденсатор. /зураг 1.81/ 0.01μF (103F) 7mm, 7mm, 3mm .022μF (223F) 7mm, 10mm,4mm 0.1 μF (104F) 9mm, 11mm, 5mm зураг 1.81. зураг 1.82. 47pF (470J) 7mm, 5mm, 4mm 220pF (221J) 10mm, 6mm, 4mm 1000pF (102J) 14mm, 9mm,4mm Мика конденсатор - Mica Capacitor Мика ялтсыг диэлектрик болгон ашигласан туйлт бус конденсатор. Өндөр температурт өндөр давтамжийн фильтр болгон ашиглана. 500 v хүчдэлд ажиллах чадвартай. /зураг 1.82/ Металл полистр ялтсан конденсатор - Metallized Polyester Film Capacitors Полистр конденсаторын төрөл. /зураг 1.83/ 0.001μF (1n. n) Breakdown voltage: 250V, 8mm, 6mm, 2mm 0.22μF (u22) Breakdown voltage: 100V, 8mm, 6mm, 3mm 2.2μF (2u2) Breakdown voltage: 100V, 15mm, 10mm, 8mm зураг 1.83. зураг 1.84. Хувьсах конденсатор - Variable Capacitor Хувьсах С-тай конденсатор. /зураг 1.84/ Зүүн талаас эхнийх нь "trimmer" ceramic dielectric ашигласан. Дараагийнх нь polyester film dielectric ашигласан. 20pF (3pF-27pF) 6mm, 4.8mm эдгээр нь төрөл бүрийн өнгөтэй: цэнхэр 7pF (2-9), цагаан 10pF (3-15), ногоон 30pF (5 - 35), бор 60pF (8 - 72). 30pF (5pF-40pF) 6.8mm, 4.9mm, 5mm Баруун талынх нь радио тунерт ашигласан, варикон "Varicons" гэж нэрлэдэг. Ихэвчлэн Японд үйлдвэрлэдэг. /зураг 1.85/ Зүүн талынх нь агаарыг диэлектрикийн оронд ашигладаг. Тус бүр нь 2pF - 18pF багтаамжтай 3 конденсатораас тогтно. зураг 1.85. 1.2.14. Хавтгай конденсаторын тэмдэглэгээ /зураг 1.86, 1.87/ хазайлт: M = 20%, K = 10%, J = 5%, H = 2.5% F = ± 1pF. 20

зураг 1.86. 474K63 Æ 47 × 10000 pF Æ 470000 pF Æ 0.47 microfarad. K Æ 10% хазайлт. 50, 63, 100 Æ номиналь хүчдэл. зураг 1.87. 1.3. Цахилгааны техникийн аюулгүй байдал Санамсаргүйгээр хүн хэлхээний аль нэг хэсэгт биеийнхээ аль нэг хэсгээр хүрэх үед хүний биеэр цахилгаан дамжуулагдах боломжтой. Үүнийг тогонд цохиулах (цахилгаан гүйдэлд цохиулах буюу ток (гүйдэл)-нд цохиулах) гэж ярьдаг. Хүн тогонд цохиулагдах үед дараах хоёр үзэгдэл явагддаг гэж үздэг. 1. Ямар нэгэн материалаар цахилгаан гүйдэл дамжуулагдах үед тухайн материалыг халаадаг. Иймээс хүн цахилгаанд цохиулагдах үед халах болон түлэгдэх боломжтой. 2. Цусны системд өөрчлөлт оруулснаар хүний тархи бусад эрхтэнг гэмтээх боломжтой. Хүн цахилгаан хэлхээний тогтой болон газардуулсан утсанд зэрэг хүрвэл хүний биеэр цахилгаан дамжуулагдаж, хүн тогонд цохиулах нь ойлгомжтой. Харин ганц тогтой утасны хувьд зарим хүмүүст буруу ойлголт байдаг. Өөрөөр хэлбэл цахилгаан дамжуулагч утсанд дээр сууж байгаа шувуудыг хараад тогтой утсанд хүрэх нь ямарч аюулгүй гэдэг ойлголттой байдаг. Тэгвэл тогтой нэг утаснаас ямар тохиолдолд тогонд цохиулж болохыг үзье. /зураг 1.88/ зураг 1.88. Дээрх зурагнаас үзвэл үнэхээр шувуудын хувьд тогонд цохиулах буюу шувуугаар цахилгаан гүйдэл гүйх боломж алга. Харин хүний хувьд өөр хэрэг. Учир нь хүний гараас хөл хүртэл цахилгаан эсэргүүцлийн хэмжээ ойролцоогоор 10Мом, хөл гутлын ширэн ул 2-ын хоорондох эсэргүүцэл хуурай бол 100к-500ком, нойтон бол 5к-20ком байдаг учраас газраар дамжуулан хүнээр гүйдэл гүйх боломжтой тул хүн дээрх тохиолдолд тогонд цохиулна. Харин хүн дамжуулагч утасны газартай холбосон утсанд хүрвэл гүйдэл гүйхгүй. /зураг 1.89/ 21

зураг 1.89. Газардуулаагүй хэлхээний хувьд хүнд нөлөөлөхгүй. /зураг 1.90/ Гэвч энэ нь зөвхөн онолын хувьд боломжтой болохоос практикт ихэнх хэлхээ газардуулагдсан байна. зураг 1.90. Хэдийгээр хэлхээг газардуулаагүй боловч зарим нэгэн санамсаргүй дамжуулагчид (жишээ нь мод, ус г.м) хэлхээ хүрсэний улмаас тэжээлийн аль нэг хэсэг нь газардуулагдсан байж болно. Жишээлбэл хэлхээний хасах туйлд мод (мод хэдийгээр цахилгаан тусгаарлагч боловч ургаа мод цахилгааныг сайн дамжуулдаг) хүрч хасах туйлыг газардуулсан байж болно. /зураг 1.91/ зураг 1.91. Эсвэл хэлхээний нэмэх туйлд мод хүрч түүнийг газардуулсан байж болно. /зураг 1.92/ зураг 1.92. Мөн түүнчлэн газардуулаагүй хэлхээний нэмэх хасах туйлаас нь зэрэг хүн барьвал 2-улаа тогонд цохиулах болно. /зураг 1.93/ 22

зураг 1.93. Тэгэхээр тогтой утаснаас барих үед тогонд цохиулах буюу хүний биеэр цахилгаан гүйдэл гүйх боломжтой байдаг байна. Хүн хуруугаараа хэлхээнд хүрсэн тохиолдолд хуруу газар 2-ын хоорондох эсэргүүцэл хуурай бол 40к-1Мом, нойтон бол 4к-15ком, гарынхаа алгаар хүрэхэд хуурай бол 3к-8ком, нойтон бол 1к-2ком, гараараа металл бариад хэлхээнд хүрэхэд хуурай бол 5к-10ком, нойтон бол 1к-3ком, гар ус 2-оор дамжуулан хүрэхэд 200-500ом, гутал буюу хөл ус 2-оор дамжин хүрвэл 100-300ом эсэргүүцэлтэй байдаг гэж үздэг. Тогонд цохиулах өөр нэг боломжийн тухай үзье. Цахилгааныг дамжуулагч утасны тогтой утас тасарч газарт хүрсэн тохиолдлыг авч үзье. /зураг 1.94/ зураг 1.94. Хэрэв цахилгаан үүсгүүр, тасарсан утас 2-ын хоорондох зай ойр байрлах үед энэ тун аюултай гэж үздэг. Учир нь энэ 2-ын хооронд хүн орох үед тогонд цохиулах (газрын эсэргүүцэл хүнийхээс олон дахин их учир гүйдэл хүний хөлөөр дамжин гүйнэ) боломжтой. /зураг 1.95/ зураг 1.95. Цахилгааныг найдвартай дамжуулахын тулд цахилгааны үүсгүүрээр гарсан утас буюу галтай утас, газартай холбосон газардуулагч утсыг ашигладаг. /зураг 1.96/ зураг 1.96. 23

Харин цахилгааныг хэрэглэгч төхөөрөмжийг металл хайрцагт байрлуулах ба хайрцаг газар 2-ын хооронд потенциалын ялгавар байхгүй учраас гадна талын хайрцагт хүрэх үед цахилгаанд цохиулахгүй. /зураг 1.97/ зураг 1.97. Хэрэв галтай утас санамсаргүйгээр гаднах металлтай холбогдсон бол гаднах хайрцагт хүрэх үед тогонд цохиулна. /зураг 1.98/ зураг 1.98. Харин санамсаргүйгээр газардуулсан утас металл савтай холбогдсон тохиолдолд тогонд цохиулахгүй. /зураг 1.99/ зураг 1.99. Гэвч энэ тохиолдолд вилькийг эргүүлэн холбовол гадна талын хайрцагт хүрэхэд тог цохино. /зураг 1.100/ зураг 1.100. Иймээс газардуулсан тусгай утастай 3 утаснаас тогтох хэлхээг ашиглах болсон. Энэ хэлхээний ач холбогдол нь гадна талын хайрцгийг үргэлж газартай холбосноор хэлхээний аюулгүй байдлыг үлэмж хэмжээгээр сайжруулсан гэж үзэж болно. /зураг 1.101/ 24

зураг 1.101. 1.4. Лапласын хувиргалт Хэлхээнд анализ хийхэд Лапласын хувиргалтыг өргөн ашигладаг. Лапласын хувиргалт нь t хугацаанаас хамаарсан f(t) функцийг s комплекс хувьсагчаас хамаарсан F(s) функц уруу дараах томъёоны дагуу хөврүүлэх явдал юм. ∫∞ −= 0stdtf(t)eF(s) f(t) F(s) 1. δ(t) 1 2. ued(t) 1/s 3. t 1/s2 4. exp(at) 1/(s–a) 5. exp(–at) 1/(s+a) 6. sin(at) a/(s2+a2) 7. cos(at) s/(s2+a2) 8. sh(at) a/(s2–a2) 9. ch(at) s/(s2–a2) 10. (eat–ebt)/(a–b) 1/(s–a)⋅(s–b) 11. (a⋅eat–b⋅ebt)/(a–b) s/(s–a)⋅(s–b) 12. t⋅exp(at) 1/(s–a)2 13. f(at) (1/a)⋅F(s/a) 14. f(t–a)⋅ued(t) exp(–as)⋅F(s) 15. exp(at)⋅f(t) F(s–a) 16. exp(–at)⋅f(t) F(s+a) 17. df(t)/dt sF(s) 18. ∫ t0f(t)dt (1/s)⋅F(s) Лапласын хувиргалтаар резистор, ороомог, конденсатор 3-ыг дараах схемээр төлөөлүүлэн үзнэ. /зураг 1.102/ зураг 1.102. Жишээ 1.1. Цуваа RC хэлхээний хувьд Лапласын хувиргалтыг ашиглан тооцоог хийж үзье. Үүний тулд С багтаамжтай конденсаторыг 1/sC эсэргүүцэлтэй резистораар сольсон дараах хэлхээг авч үзнэ. /зураг 1.103/ 25

зураг 1.103. Хэлхээгээр гүйх гүйдэл нь: () sC1RsViin+ = Иймд гаралтын хүчдэл нь: ()()() RC1s1RCsVsC1sC1RsVsC1isVininout+ ⋅=⋅ + =⋅= байна. Хэрэв оролтонд () s1sVin= импульс оруулбал гаралтанд гарах импульс нь () ⎟⎠ ⎞ ⎜⎝ ⎛+ ⋅= RC1ss1RC1sVout хэлбэртэй байна. /зураг 1.104/ Үүнийг хугацаанаас хамаарсан функц хэлбэрээр илэрхийлбэл: ()⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −⋅= − RCtoute1RC1tV зураг 1.104. Жишээ 1.2. Дараах цуваа RC хэлхээний хувьд Лапласын хувиргалтыг ашиглан тооцоог хийе. Үүний тулд С багтаамжтай конденсаторыг 1/sC эсэргүүцэлтэй резистораар сольсон дараах хэлхээг авч үзнэ. /зураг 1.105/ зураг 1.105. Хэлхээгээр гүйх гүйдэл нь: () sC1RsViin+ = Иймд гаралтын хүчдэл нь: ()()() RC1sssVRCRsC1RsVRisVininout+ ⋅⋅=⋅ + =⋅= байна. Хэрэв оролтонд () s1sVin= импульс оруулбал гаралтанд гарах импульс нь () ⎟⎠ ⎞ ⎜⎝ ⎛+ ⋅= RC1s1RCsVout хэлбэртэй байна. /зураг 1.106/ Үүнийг хугацаанаас хамаарсан функц хэлбэрээр илэрхийлбэл: ()RCtouteRCtV− ⋅= зураг 1.106. 26

1.5. Шугаман RC хэлхээ (давтамжийн характеристик) 1.5.1. Хожимдогч RC хэлхээ буюу өндөр давтамжийн фильтр зураг 1.107. R резистор, С конденсаторыг цуваа холбосон дараах RC хэлхээг авч үзье. /зураг 1.107/ Дээрх RC хэлхээний оролтын хүчдэл нь С конденсатор ба R резистор дээр хуваагдаж унах бөгөөд гаралтын хүчдэл нь С конденсатор дээр унах хүчдэлтэй тэнцүү байна. /зураг 1.108/ зураг 1.108. Ингээд дараах зүйлүүдийг тооцвол: ƒ Конденсатор дээрх хүчдэл нь резистор дээрх хүчдлээс π/2 фазаар /900-аар/ хоцроно ƒ Конденсаторын багтаамжийн эсэргүүцэл Xc=1/ω⋅C буюу Xc=1/2πּf⋅C /энд ω нь тойрог давтамж бөгөөд давтамжтай ω=2π⋅f хамааралтай байна/ байдаг ƒ Конденсатор ба резистораар гүйх гүйдлүүд тэнцүү учир тэдгээр дээр унах хүчдэл нь тэдгээрийн эсэргүүцэлтэй шууд хамааралтай. ƒ Оролтын хүчдэл нь конденсатор ба резистор дээр унах хүчдлийн нийлбэртэй тэнцүү байна. Иймээс оролтын хүчдэл нь конденсатор ба резисторийн эсэргүүцлийн нийлбэртэй шууд хамааралтай. ƒ Гаралтын хүчдэл нь конденсатор дээрх хүчдэлтэй тэнцүү байна. Иймээс гаралтын хүчдэл конденсаторын багтаамжийн эсэргүүцэлтэй шууд хамааралтай. Эдгээр зүйлүүдийг тооцож оролт гаралтын хүчдлүүдийг вектор диаграммын аргаар дүрсэлбэл: /зураг 1.109/ зураг 1.109. Эндээс гаралтын хүчдлийг олбол: ()22inoutC1RC1VVω+ ω= буюу ()in2outVRC11V⋅ ω+ = ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −=ϕcXRtanacr Энд: ω – тойрог давтамж /ω=2π⋅f/ ϕ– оролт гаралтын хүчдлийн фазын зөрүү f Æ 0 Xc Æ ∞ Vout = Vin ϕ = 0 Хэрэв оролтын импульсын давтамж тэг байх үед (ω=0) оролт гаралтын хүчдлийн фазын зөрүү 0 байх ба оролт гаралтын хүчдлүүд хоорондоо тэнцүү байна. /зураг 1.110/ зураг 1.110. 27

f = f cXc = R C1f21Rc⋅ ⋅π= Vout = 0.707Vin ϕ = –450 Оролтын импульсын давтамжийг цаашид ихэсгэж критик утгатай тэнцүү болгоход (ω=ωo) оролт, гаралтын хүчдлийн фазын зөрүү 45 градус болох бөгөөд гаралтын хүчдэл оролтын хүчдлийн 0.707 хувьтай тэнцүү болно. /зураг 1.111/ зураг 1.111. f Æ ∞ Xc Æ 0 Vout Æ 0 ϕ = –900 Давтамжийг цааш нь ихэсгэж хязгааргүй их болгоход (ωÆ∞) гаралтын хүчдэл бараг тэг болох бөгөөд энэ үед гаралтын хүчдэл нь оролтын хүчдлээс 90 градусаар хоцорно. /зураг 1.112/ зураг 1.112. Иймээс энэ RC хэлхээ нь өндөр давтамжийн фильтрийн үүргийг гүйцэтгэнэ. Өөрөөр хэлбэл нам давтамжтай сигналуудыг нэвтрүүлэх бөгөөд өндөр давтамжтай сигналуу

Add a comment

Related presentations

Related pages

Аналог электроник /монгол/ - Education

Аналог электроник /монгол/ by batnyam-maidarjav. on Jul 05, 2015. ... Download Аналог электроник /монгол ...
Read more

Тоон электроник /монгол/ - Education

Тоон электроник /монгол/ by batnyam-maidarjav. on Jun 20, 2015. Report Category: Education. Download: 22 Comment: 0. 1,564. views ...
Read more

Монгол хэлний үгийн алдаа шалгах "Ангууч програм ...

Аналог электроник; ... Speaker group-с гаргасан Монгол ... Манай клуб нь электроник, ...
Read more

Электроникийн Улсын Олимпиад-2013 ~ ЭЛЕКТРОНИКИЙН XVI ОЛИМПИАД

Аналог электроник. ... 1999 оны 5 сарын 8 нд Монгол улсад электроникийн ...
Read more

Электроника — Wikipedia

Электрон компонент дип, электроник системада электроннарга, ... аналог һәм цифра.
Read more

Dagvasuren Batbold - Google+

Speaker group-с гаргасан Монгол хэлний ... болон Аналог гэх 2 ... Аналог электроник; ...
Read more

Транзистор — Википедиа нэвтэрхий толь

... хурдан шилжилт хийх чадвартай учир өргөн хүрээний тоон болон аналог ...
Read more

Тоон дохио боловсруулалт — Википедиа нэвтэрхий толь

Мөн боловсруулалтын эцсийн үр дүн болох гаралтын тоон дохио нь аналог дохио байх ...
Read more