20140218 cisec-emc-in-aeronautics

50 %
50 %
Information about 20140218 cisec-emc-in-aeronautics
Technology

Published on February 28, 2014

Author: cisec

Source: slideshare.net

Description

Part 1 : general context and High intensity radiated Field ( HIRF)
After a rapid presentation concerning the evolution of technologies in the aeronautical domain based particularly on the use of composite materials and the increased role of electronics to ensure of critical functions, it is logical to examine which are the internal and external phenomena which could compromise the safety of the flight and the safety of operation with respect to electromagnetic threats.
For this purpose, a complete panorama of the electromagnetic phenomena is presented The origin of the specifications for HIGH INTENSITY RADIATED FIELD (HIRF) which are taken into account for the certification of the aircraft is largely approached at the level system but also at the level of equipment.
Part 2 : Lightning direct & indirect effect. Hardening and protection devices
After a presentation of lightning phenomenology for direct and indirect effect at system level but also at the equipment level according to the difficulties to produce an acceptable method of demonstration especially for the functional aspect This presentation is followed detailed and illustrated with description of various of CEM tests carried out in Faraday or better in anechoic chamber at the level of the equipment and the difficulty in reproducing the best as possible real installation.
The bases of the design of the circuit and protect devices are described as for the performances to satisfy in particular with regard to the concept of comprehensive and consistent hardening.

cisec Plus d’information à http://asso-cisec.org 2013-2014 Le lundi mardi, de 17h à 19h Série de Conférences Ingénierie des systèmes embarqués critiques 1- Introduction, systèmes critiques Aéronautique (P. Traverse, Airbus, 18/11/2013) Espace (JP. Blanquart, Astrium, 25/11/2013) Automobile (H. Foligné, Continental Automotive, Reportée,au 11/03/2014 2- Sûreté, historique Histoire de la sécurité du Concorde à l’A380 (JP. Heckmann, Apsys, 9/12/2013) Comparaison de normes de sûreté (JP. Blanquart, Astrium, JM. Astruc, Continental, 16/12/2013) 3- Développement logiciel, assurance (H. Bonnin, Capgemini, 21/1/2014) 4- Développement matériel, assurance Automobile (JP. Loncle, Continental, 28/1/2014) Aéronautique (P. Pons, Airbus, 11/2/2014) 5- Intégration système et compatibilité électromagnétique (JC. Gautherot, ex DGA/CEAT) Partie 1, 18/2/2014 Partie 2, 25/2/2014 6- Interactions homme-système (F, Reuzeau, Airbus, P. Palanque, IRIT, 18/3/2014) 7- Chaîne de production d’électronique pour l’automobile (Continental, 25/3/2014) 8- Diagnostic et maintenance de systèmes (Actia, 1/4/2014) 9- Systèmes autonomes dans les transports (drones, aide à la conduite automobile) (ONERA, Continental, 8/4/2014) 10- Les systèmes domotiques (R. Alami, LAAS, 15/4/2014) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 1/

SUMMARY  PART1  GENERAL CONTEXT in the AERONAUTICAL FIELD • 1/3 Structures composite materials • 2/3 Electronics and critical functions • 3/3 New architectures and System evolution ELECTROMAGNETIC PHENOMENA • Panorama of electromagnetic phenomena and threats • High intensity radiated field HIRF • LIGTHNING direct effect   PART2 • • • LIGTHNING indirect effect Electromagnetic Compatibility EMC Hardening and electromagnetic protection  APPENDIX:  Technical elements necessary to work out a financial estimate CONCLUSION • CISEC: intégration systèmes et CEM phénomènes électromagnétiques 2/

GENERAL CONTEXT 1/3: New Materials  COMPOSITES STRUCTURES • Better mechanical properties • Mass gain and improved stiffness • Reduced delay and manufacturing process • Maintenance (external corrosion? & Ref: refer 787 li-battery fire) • Absorbing properties (STEALTH military aircraft) • But poor Faraday performances (attenuation ) and poor electrical properties VS light alloys (aluminum) i.e. grounding and metallization problems (resistivity of carbon fiber 1000 more greater than aluminum alloy) • Bad electrochemical compatibility (emf: 900 mV with aluminum) which need in particular locations the use of TITANE in order to avoid corrosion phenomena CISEC: intégration systèmes et CEM phénomènes électromagnétiques 3/

Aircraft composites structure 1/3 B787 & A350 CISEC: intégration systèmes et CEM phénomènes électromagnétiques 4/

GENERAL CONTEXT 1/3: A380 COMPOSITES CISEC: intégration systèmes et CEM phénomènes électromagnétiques 5/

Aircraft composites structure 1/3 Military aircraft & helicopter  Rafale CISEC: intégration systèmes et CEM phénomènes électromagnétiques 6/

General view of the trend to increased use of composites materials 1/3 CISEC: intégration systèmes et CEM phénomènes électromagnétiques 7/

GENERAL CONTEXT 2/3: Electronic & critical functions  Even more Electronic • • • •  FMS,GPWS,TCAS,IFE (2500 kg for A 380 2 à 3 Mips 4,7 M€) Increased density of electronic equipment Analogical electronic disappear for the profit all numerical electronic Easy change thanks to embedded soft Critical functions (no mechanical back-up) FADEC (Engine control) • Fly by wire (FBW) • etc. FREQUENCY SPECTRUM • Up to 18 GHz or more (40 GHz) • Increased sensitivity (ex. GPS, ) •  CISEC: intégration systèmes et CEM phénomènes électromagnétiques 8/

Illustration of avionics changes 2/3: Example of old helicopter generation analogical Electronic (AS 355) Example of new helicopter (EC 725) Numerical electronic CISEC: intégration systèmes et CEM phénomènes électromagnétiques 9/

GENERAL CONTEXT 2/3: Electronic critical functions natural stability VS artificial which need computer operating with high safety Fv Fe Aircraft with natural stability P Fv Fe P Aircraft with artificial stability provided by electronic computer CISEC: intégration systèmes et CEM phénomènes électromagnétiques 10/

General context Frequency spectrum 2/3 Frequency spectrum in the world Typical radio-navigation frequencies for civil aircraft CISEC: intégration systèmes et CEM phénomènes électromagnétiques 11/

GENERAL CONTEXT 3/3: New architectures and concepts for the aircraft system  INCREASED ELECTRIC POWER • Even more electric actuators and less hydraulic • Deicing & no Engine bleed air (ex B 787) • Air conditioning compressor driven with electric motor (ex B 787) • Mass gain (more particularly starter-generator ) • Regulations and control law more easy • Cable routing more easy than hydraulic rigid pipes • Improved Maintenance opposite hydraulic (drain, leakage, pollution, fire risk….) • but…. • Electromagnetic disturbances to be solved CISEC: intégration systèmes et CEM phénomènes électromagnétiques 12/

GENERAL CONTEXT 3/3: TREND to INCREASED ELECTRIC POWER CISEC: intégration systèmes et CEM phénomènes électromagnétiques 13/

Change in the aircraft architecture 3/3 conventionnal architecture New architecture: example air conditioning system driven with electrical motor CISEC: intégration systèmes et CEM phénomènes électromagnétiques 14/

Just a look inside aircraft body: you can see…… Of course many hydraulic pipes….. But also even more electrical cables (low level signal & power supply wires) This the reason why electromagnetic threats shall be taken into account at the first step of the design This was the case for A 320 airworthiness with Special condition 75 for lightning & 76 for HIRF CISEC: intégration systèmes et CEM phénomènes électromagnétiques 15/

Evolution to more electric Aircraft 3/3  BOEING 787  95 km of cables  More than 60 000 electrical bonding  40 000 cables segments  1 500 Electrical harness  400 optical bonding  AIRBUS A 380  500 km of cables  More than 9 000 connectors  1 600 electrical harness CISEC: intégration systèmes et CEM phénomènes électromagnétiques 16/

ELECTROMAGNETIC PHENOMENA & THREATS non-intentional Artificial sources Natural sources SPIKE HIRF CHAMPS FORTS Transitoires d'alimentation EMC ESD Couplage Radioélectrique Bruit Tempest Furtivité Terrestre Atmosphérique Galactique Solaire PHENOMENES PHENOMENES Anticompromission intentional électrostatiques Compatibilité Electromagnétique CRE DES Décharges LEMP CEM ERC FOUDRE ELECTROMAGNETIQUES ELECTROMAGNETIQUES Stealth HERP MFP Sécurité du Micro-onde Forte Puissance IEMN HPM EMP DRAM Personnel Dommages des rayonnements sur armes et munitions HERO CISEC: intégration systèmes et CEM phénomènes électromagnétiques 17/

Nuclear Electromagnetic Pulse  Generated by a High altitude nuclear explosion    Compton effect in the atmosphere Principal Characteristics  bi-exponential  Crest Amplitude 50 kV/m  Rise time approximately:10 ns  Half time duration 200 ns  Capture area notion Military system are essentially concerned CISEC: intégration systèmes et CEM phénomènes électromagnétiques 18/

Electromagnetic tests / Electrostatic discharges  created by rubbing:  On isolating or low conductivity materials with low air moisture ratio  Principal characteristics  Bi exponential waveform  Crest amplitude approximately 15 kV  Rise time: some ns  Half time duration : 20 ns CISEC: intégration systèmes et CEM phénomènes électromagnétiques 19/

Example measurement of electrostatic charging due to blades rotation and hot gas turbine exhaust during load winching operation for helicopter : equivalent to a capacitor of 1nF charged up to 40 kV which can be lethal CISEC: intégration systèmes et CEM phénomènes électromagnétiques 20/

Electrostatic charges: Example of efficiency measurement of e-discharger. The objective of the design is to get a continuous flow of low current in order to avoid high discontinuous high current discharges and then to reduce the noise which can introduce disturbances & a loss of sensitivity on aircraft radio receiver. But as we will see those devices are often damaged in the case of aircraft lightning event CISEC: intégration systèmes et CEM phénomènes électromagnétiques 21/

Example of High Power transmitter antenna balanced hardening notion (limit in the level of electromagnetic protection) Military aircraft or helicopter has enough agility to avoid collision, this is not the case for civil aircraft, in that way safety distance which are taken into account in regulatory document are increased Curtain antenna CISEC: intégration systèmes et CEM phénomènes électromagnétiques 22/

HIGH INTENSITY RADIATED FIELD : Power transmitter OTHB 12 elements 1MW EIRP = 100 MW 5 to 28 MHz 41,70 N 121,18 W CISEC: intégration systèmes et CEM phénomènes électromagnétiques 23/

Some example of Incidence due to HIRF       Tornado crash in the vicinity of VOA Transmitters (was at the origin of CS 76 for A320 Certification) ECMU failure of Ecureuil AS 355N In the vicinity of CENTAURE Radar INS ALIZE MARINE Failure on Aircraft Carrier AS332 disturbance of NG DNG T4 indicators when landing on ship Phone which was forget « on » in the freight compartment near fire detector unit Inopportune opening of hydraulic barrage gate during security inspection due to TW emission Don’t make confusion for turning “off “ portable computer during take off and landing operation: it’s an EMC problem (noise and or radio interference with radio navigation system CISEC: intégration systèmes et CEM phénomènes électromagnétiques 24/

HIGH INTENSITY RADIATED FIELD : near field for electric dipole CISEC: intégration systèmes et CEM phénomènes électromagnétiques 25/

HIGH INTENSITY RADIATED FIELD: near field for magnetic loop CISEC: intégration systèmes et CEM phénomènes électromagnétiques 26/

HIGH INTENSITY RADIATED FIELD Example of Radiated field in the vicinity of high power transmitter Curtain antenna 250 kW 15 MHz Rhombic antenna 150 kW 15 MHz CISEC: intégration systèmes et CEM phénomènes électromagnétiques 27/

HIGH INTENSITY RADIATED FIELD: formulas simplification CISEC: intégration systèmes et CEM phénomènes électromagnétiques 28/

HIGH INTENSITY RADIATED FIELD: formulas simplification substantiation  According that the electromagnetic field in the vicinity of antenna vary strongly with the AC distance and if we observe for example the radiation pattern of aperture it can be seen that the law in 1/R2 for the value power density is an overestimation but conservative and then acceptable CISEC: intégration systèmes et CEM phénomènes électromagnétiques 29/

HIGH INTENSITY RADIATED FIELD simple formulas for field calculation field calculation Basic formulas for a radiated electromagnetic field approximate calculation 2 P=E /Z0 W/m2 with Z0 = E/H = 120 p = 377 W - E Electric field V/m - H magnetic field A/m Knowing the transmitter power and the numerical antenna gain We can calculate the power radiated density and then the field for the distance R 2 P = GW/4 p R E = (30GW)1/2/R 2 For Near field (if R< D /2l) this formula is majoring l Is the wavelength in m calculated with l = f (in MHz)/ 300 D (in m) is the greatest antenna dimension en (Ex RADAR parabola diameter) Don’t make confusion between effective mean value and effective peak value Em For rectangular signal as for typical radar modulation with pulse duration t et repetition time T Em = Ec (t /T)1/2 CISEC: intégration systèmes et CEM phénomènes électromagnétiques 30/

HIGH INTENSITY RADIATED FIELD: Special condition SC76 was edited for the certification of A320 CISEC: intégration systèmes et CEM phénomènes électromagnétiques 31/

HIGH INTENSITY RADIATED FIELD: value and distance CISEC: intégration systèmes et CEM phénomènes électromagnétiques 32/

HIGH INTENSITY RADIATED FIELD: average value and peak value (for RADAR modulation) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 33/

HIGH INTENSITY RADIATED FIELD: acceptable method of demonstration 1/2 Acceptable methods of demonstration are : 1° low level method based on electric field attenuation measurements performed where critical or essential equipments are located and also for the cables induced current coming from exposed zones, thus one have 2 transfer basic functions After extrapolation to the external threat (linearity hypothesis) comparison of the value obtained in laboratory test center with the value to be demonstrated. The quantified margin between this the extrapolated value and the laboratory value shall be positive However this method is sometime problematic if we take into account the representativeness of test s in the FARADAY chamber 2 high level demonstration directly on the aircraft this method is not possible in the whole frequency domain particularly for low frequency due to the great dimensions of civil aircraft Example direct injection in a coaxial line for a military aircraft limited to 100 MHz CISEC: intégration systèmes et CEM phénomènes électromagnétiques 34/

HIGH INTENSITY RADIATED FIELD: demonstration methods 2/2 3° Calculation codes Approximately valid up to 400 MHz for internal electromagnetic parameters, but important problems to get a true representative model In any case the model shall be validated with the help of great experimental means associated with high performance measuring equipment on particular points In practice: this different methods are combined in order to take into account: - aircraft dimensions - test center facilities (amplifier power and antenna gain…) - data on similar aircraft (same technology) - New concept and technologies In any case it is necessary to quantify a hardening margin face to the specified external threat. This margin shall include : - a consumable part (putting back to initial level thanks to defined periodic maintenance operations in order to cover wear , aging and corrosion phenomena…) - and a permanent part in order to cover error measurements, manufacturing process drift etc., in order to get a good level of safety. CISEC: intégration systèmes et CEM phénomènes électromagnétiques 35/

HIGH INTENSITY RADIATED FIELD: low level method or transfer function measurement Radiated field in the vicinity of avionic bay Cable induced Current measurement probe CISEC: intégration systèmes et CEM phénomènes électromagnétiques 36/

HIGH INTENSITY RADIATED FIELD: CISEC: intégration systèmes et CEM phénomènes électromagnétiques 37/

HIGH INTENSITY RADIATED FIELD: a minimum of 4 incidences and polarizations are performed for each frequency CISEC: intégration systèmes et CEM phénomènes électromagnétiques 38/

HIRF TEST PROBLEMATIC: amplitude accuracy Taking for example this recorded curve where we get high resonant and anti resonant amplitude in relation with the frequency, in order to get an error less than 3 db we have to calculate the sampling by using this formula N=log(F2/F1)/log (1+1/Q)  F1, and F2 lower and upper frequency For F1= 400 MHz and F2= 18 GHz for Q= 10 a minimum of 40 frequencies and for Q=100 382 frequencies are necessary to cover correctly the spectrum CISEC: intégration systèmes et CEM phénomènes électromagnétiques 39/

HIRF TEST PROBLEMATIC: data to be recorded For a aircraft qualification we have to take into account 4 to 5 Equipment locations 10 to 20 critical or essential equipments (mean 15) 2cables minimum per equipment 4 incidences minimum 2 polarizations H et V Consequences: For internal radiated Field: Frequency domain1 MHz to18 GHz Q= 100 i.e. 984 (1000) spot frequencies that leads to: 2x5x4x 1000 = 40 000 measurements For wire induced current Frequency domain10kHz à 100 MHz Q= 10 or 100 i.e. 96 (100) or 925 (1000) spot frequencies that leads to: 15x2x4x2x100 = 24 000 ou 240 000 measurements CISEC: intégration systèmes et CEM phénomènes électromagnétiques 40/

Danger of the non ionizing radiations: Electric Field (thermal effects only) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 41/

Danger of the non ionizing radiations: Electric Field thermal effects only ICNIRP (International Commission on Non-Ionizing Radiation Protection) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 42/

LIGHTNING STROKE from CLOUD TO GROUND CISEC: intégration systèmes et CEM phénomènes électromagnétiques 43/

Some examples of Lightning incidence & accident       Loss of 2 engines of small jet above Atlantic Sea (acoustic phenomena) Mirage F1 of CAMBRAI AAAF Base ejector seat was energized Helicopter replenishment service from BRISTOW ditching in north SEA after loss of tail rotor JAN 19 1995 Personal experience during Paris Toulouse A 300 Flight and discussion after landing: pilot tell me he was in North Sea stroked by lightning 6 times in 10 minutes ULM flight actuator blocked due to ARC WELDING crash follow Amateur Video recording from tower during 747 take off Important Studies were performed in USA by NASA F106B and USAF with CV 580 and in France by ONERA /CEV&CEAT on Transall C160 instrumented with electromagnetic sensor for measuring condition of occurrences amplitude and rise time, duration time, nbr of stroke….. CISEC: intégration systèmes et CEM phénomènes électromagnétiques 44/

Two example of Helicopter struck by Lightning incidence & accident CISEC: intégration systèmes et CEM phénomènes électromagnétiques 45/

Different cases of aircraft lightning event to consider  Intra or inter-cloud: in those cases the aircraft in the vicinity of clouds has triggered the arcing phenomena. it’s 80 % of lightning recorded cases. In flight measurement (CV 580 USAF or C160 AAF in France has shown that the amplitude is less than 40 kA)  Intercept stroke from cloud to ground: amplitude taken actually for airworthiness authority is 200kA Civil aircraft are struck by lightning every 4000 hrs, military: 7000 hrs  CISEC: intégration systèmes et CEM phénomènes électromagnétiques 46/

Cockpit glass illumination due to high electrical field before lightning stroke holy ELME effect CISEC: intégration systèmes et CEM phénomènes électromagnétiques 47/

LIGHTNING: result off the process electric cloud charge Cloud to ground Lightning process precursors Return stroke CISEC: intégration systèmes et CEM phénomènes électromagnétiques 48/

Lightning threat modelization  Lightning Process       Precursor (fires of the holy ELME) Return stroke Intermediate current DC current Secondary discharges Phenomena  inter cloud & Intra cloud frequently aircraft initiated (cf. flight test CV 580 & Transall C160)   Cloud to ground (strongest values from the contained energy point of view) high voltage strong current and pulse repetition impossible to generate simultaneously    Points of attachment related to the tension Damages related to the current Coupling related to the local densities of current (see lightning simulation slides CISEC: intégration systèmes et CEM phénomènes électromagnétiques 49/

Definition: multiple burst / multiple stroke LIGHTNING attachement Courant établi re-attachement Courant établi Composante persistante Multiple burst Multiple stroke Composante persistante Multiple burst Multiple stroke CISEC: intégration systèmes et CEM phénomènes électromagnétiques 50/

Lightning current amplitude and probability CISEC: intégration systèmes et CEM phénomènes électromagnétiques 51/

Aircraft lightning interaction: Directs & indirects effects  As it was said previously, one cannot simulate in experiments at the same time the effects of the high electric field and the strong current; one thus studies with large simulators the specific ones:  Direct effects      Return stroke or secondary lightning waveform A &t D Impact of the arc, lightning currents flow 2 Structural thermo mechanical damages Spark between poor metalized part (cover and structure) above vapor in fuel tank ( shall be less than 200m J) Im ax , ∫ )dt , ∫(t )dt i (t i Indirect effects     multistroke, multiburst phenomena Electromagnetic coupling Over voltage or current surges, noise Reversible Functional disturbances or non reversible equipment damages di (t ) d 2 i (t ) de(t ) Im ax , , , dt dt dt CISEC: intégration systèmes et CEM phénomènes électromagnétiques 52/

Civil aircraft: First recorded lightning stroke with direct effects (thermal….) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 53/

Direct lightning effects on a weapon system Illustration of CORONA Effect !!! Example of irreversible damages CISEC: intégration systèmes et CEM phénomènes électromagnétiques 54/

CISEC: intégration systèmes et CEM phénomènes électromagnétiques 55/

LIGHTNING: waveform characteristics for direct effects current waveform A: 1er return stroke I max = 200 kA i 2dt  2.10 6 A2 .s  waveform D: secondary stroke Imax = 100 kA waveform B: intermediate current I mean = 2 kA i 2 dt  0,25.10 6 A 2 .s   idt  10C waveform C: sustaining current I mean = 200 A  idt  200C *non representative scale < 500µs 5 ms 0,1 à 1 s < 500µs durée CISEC: intégration systèmes et CEM phénomènes électromagnétiques 56/

LIGHTNING Direct effect: ZONING concept  Zone 1 • •  Zone 2 • •  Zone 1A: initial attachment point with a low probability of arc hang on Zone 1B: initial attachment point with a high probability of arc hang on Zone 2A: swept zone attachment point with a low probability of arc hang on Zone 2B: swept zone attachment point with a high probability of arc hang on Zone 3 • All the other zones of the plane other than those of zones 1 and 2, there is a low possibility of attachment of the direct arc the lightning. Surfaces of Zone 3 can be traversed by important currents but only by direct conduction between 2 point of initial attachment or sweeping CISEC: intégration systèmes et CEM phénomènes électromagnétiques 57/

LIGHTNING Direct effect: ZONING concept CISEC: intégration systèmes et CEM phénomènes électromagnétiques 58/

LIGHTNING Direct effect: ZONING concept CISEC: intégration systèmes et CEM phénomènes électromagnétiques 59/

Lightning as a function of Flight altitude 300-400 Civilian A/C 270-300 Military A/C 240-270 210-240 180-210 150-180 120-150 90-120 60-90 30-60 0-30 Ground 0 5 10 15 20 25 CISEC: intégration systèmes et CEM phénomènes électromagnétiques 30 60/

Aircraft damages distribution 50 47,3 45 40 35 30 25 17,7 20 16,1 15 8,7 10 6,9 5,9 4,5 4 5 0,3 W in gs r ad a R m e ad o ne s nn a En gi R A nt e ag e se l Fu ili s t St ab A /C lo s ag e da m o N er s 0 CISEC: intégration systèmes et CEM phénomènes électromagnétiques 61/

Example of lightning AIR SAFETY REPORT CISEC: intégration systèmes et CEM phénomènes électromagnétiques 62/

Example of high voltage test with MARX generator 25 stages charged at 200 kV = 5 MV Test on instrumented mock –up in order to study electro-charge distribution just before first arc junction under high electrical field Blade attachment CISEC: intégration systèmes et CEM phénomènes électromagnétiques 63/

Effectiveness test of lightning strip diverter: Marx generator 5 MV pek current limited to 10 kA CISEC: intégration systèmes et CEM phénomènes électromagnétiques 64/

CISEC: intégration systèmes et CEM phénomènes électromagnétiques 65/

LIGHTNING direct effect: example of radome damage CISEC: intégration systèmes et CEM phénomènes électromagnétiques 66/

cisec Plus d’information à http://asso-cisec.org 2013-2014 Le lundi mardi, de 17h à 19h Série de Conférences Ingénierie des systèmes embarqués critiques 1- Introduction, systèmes critiques Aéronautique (P. Traverse, Airbus, 18/11/2013) Espace (JP. Blanquart, Astrium, 25/11/2013) Automobile (H. Foligné, Continental Automotive, Reportée,au 11/03/2014 2- Sûreté, historique Histoire de la sécurité du Concorde à l’A380 (JP. Heckmann, Apsys, 9/12/2013) Comparaison de normes de sûreté (JP. Blanquart, Astrium, JM. Astruc, Continental, 16/12/2013) 3- Développement logiciel, assurance (H. Bonnin, Capgemini, 21/1/2014) 4- Développement matériel, assurance Automobile (JP. Loncle, Continental, 28/1/2014) Aéronautique (P. Pons, Airbus, 11/2/2014) 5- Intégration système et compatibilité électromagnétique (JC. Gautherot, DGA) Partie 1, 18/2/2014 Partie 2, 25/2/2014 6- Interactions homme-système (F, Reuzeau, Airbus, P. Palanque, IRIT, 18/3/2014) 7- Chaîne de production d’électronique pour l’automobile (Continental, 25/3/2014) 8- Diagnostic et maintenance de systèmes (Actia, 1/4/2014) 9- Systèmes autonomes dans les transports (drones, aide à la conduite automobile) (ONERA, Continental, 8/4/2014) 10- Les systèmes domotiques (R. Alami, LAAS, 15/4/2014) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 67/

Lightning indirect effect on complex system CISEC: intégration systèmes et CEM phénomènes électromagnétiques 68/

Lightning waveform to take into account for indirect effect assessment Onde A 200 kA di/dt = 140 kA/µs 2 MJ/ohm Onde D 100 kA Onde H d/dt = 140 kA/µs 0.25 MJ/ohm Onde D/2 dI/dt = 200 kA/µs 50 kA 50 µs < dt < 1 ms Onde B Q = 10 C 10 kA Onde C 200 C 30 ms < dt < 300 ms 3 fois 20 pulses 1.5 s 13 pulses CISEC: intégration systèmes et CEM phénomènes électromagnétiques 69/

From external lightning stroke to internal induced pulses CISEC: intégration systèmes et CEM phénomènes électromagnétiques 70/

Lightning indirect effects : From external to internal pulses In a very simplified manner one can write : φext (t ) = kI (t ) φ int (t ) = A( f )φext (t ) dφ int (t ) dI (t ) e (t ) = =k dt dt dI (t ) V (t ) = RI (t ) + k dt Homothetic form Derivative form CISEC: intégration systèmes et CEM phénomènes électromagnétiques 71/

Typical induced waveform at equipment level Long waveform (A, D,D/2) Long waveform Fast waveform Fast waveform (H) Fast waveform Oscillatory waveform Fast rise time= DIRAC pulse CISEC: intégration systèmes et CEM phénomènes électromagnétiques 72/

CISEC: intégration systèmes et CEM phénomènes électromagnétiques 73/

CISEC: intégration systèmes et CEM phénomènes électromagnétiques 74/

Functional susceptibility: incidence of the occurrence of the pulses with respect to the computer cycle 1 pulse many Pulses pulses burst 1 erroneous bit 1 erroneous data many erroneous data Error Detection code Message repeated equipment declared faulty Necessity to achieve lightning tests on iron bird CISEC: intégration systèmes et CEM phénomènes électromagnétiques 75/

Simulator in order to inject mutiple pulses Aircraft installation representative Cable Equipment under test Test Equipement control computer waveform de synthesizer converter Pulsed Power amplifier voltage Vco CISEC: intégration systèmes et CEM phénomènes électromagnétiques current It 76/

BASIC ELECTROMAGNETIC COUPLING INTERNAL ENVIRONMENT EXTERNAL ENVIRONMENT I bulkhead AGRESSION E internal E external H external I cable Equipement Structure CISEC: intégration systèmes et CEM phénomènes électromagnétiques 77/

External and internal Threats Modelization 2/2  Electromagnetic parameters    Electric Field E : (volt/meter) Magnetic Field H : (amps/meter) current: I (amps)  Time domain: Voltage or current waveform  Frequency Domain : current or field amplitude VS frequency curves (mean value , peak value)  Examples    LIGHTNING (LEMP): time domain current waveform EMP: time domain electric field HIRF: frequency domain CISEC: intégration systèmes et CEM phénomènes électromagnétiques 78/

External and internal Threats Modelization 1/2     The current means of theoretical modeling of the electromagnetic phenomena make it possible to predict the electromagnetic constraints intern of a system subjected to an electromagnetic aggression The computer code and the grid are selected according to the accuracy which one wants to obtain for the field time/frequency that one wants to explore It is necessary, however, to validate the models by putting into operation great experimental means These great experimental means are complex of a high cost and immobilize the system to be evaluated in a context of increasingly tended programs CISEC: intégration systèmes et CEM phénomènes électromagnétiques 79/

Electromagnetic Simulation & Modelization 1/5: different methods CISEC: intégration systèmes et CEM phénomènes électromagnétiques 80/

Electromagnetic Simulation & Modelization 1/5: different methods 2/5: advantages & drawback of each methods CISEC: intégration systèmes et CEM phénomènes électromagnétiques 81/

Electromagnetic Simulation & Modelization 3/5: examples for lightning probability CISEC: intégration systèmes et CEM phénomènes électromagnétiques 82/

Example Lightning current distribution on the structure (arc between aircraft nose and right wing) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 83/

Electromagnetic Simulation & Modelization : theoretical demonstration in seven steps experimentation/validation du modèle CISEC: intégration systèmes et CEM phénomènes électromagnétiques 84/

Experimental simulation on mock up limited to external phenomena applications examples: antenna pattern, ESR     It is possible in particular cases as for aero dynamical model in wind tunnel (cf. Reynolds number) to perform measurement at reduced scale However some electromagnetic law for similarity shall be applied in order to be representative Non linear phenomena are not taking into account such as :  Hysteresis  Magnetic Saturation  Ionization It’s necessary to reproduce skin effect dielectric & magnetic losses     emf2= e’m’f’2/r2 smf = s’m’f’/r2 If the tests are achieved in the same surrounding (see mock up inthe following table then e = e’ et m = m’ In particular cases conductivity can not be enough increased (problem of copper Vs aluminum and also ground for which it’s necessary to inject salt with water solution) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 85/

Electromagnetic law for experimental simulation on mock-up at reduced scale parameter Real system reduced scale Mock up Length L ( meter) l’ = l/r L’ = L/r Time T (second) t’ = t/g t’ = t/r Electrical field E (V/m) E’ = E/a E’ = E/a Magnetic field H (A/m) H’ = H/b H’ = H/a Magnetic permeability m (H/m) m’  m x (rb/ga) m’  m permittivity e (F/m) e’  e x (ra/bg) e’  e Electrical conductivity s (W/m) s’  s x (ra/b) s’  s x r voltage V (V) V’ = V /(ra) V’ = V /(ar) current I (A) I’ = I /(br) I’ = I /(ar) Surface current J (A/m2) J’ = J/b J’ = J/a frequency f (hertz) f’ = f x g f’ = f x r Résistance R (W) R’ = R x (b/a) R’ = R Inductance L (Henry) L’ = L x (b/ag) L’ = L/r Capacitance C (Farad) C’ = C x (a/bg) C’ = C/r CISEC: intégration systèmes et CEM phénomènes électromagnétiques 86/

Example of Antenna characterization on typical mock up CISEC: intégration systèmes et CEM phénomènes électromagnétiques 87/

Electromagnetic phenomena & threats CEM Aptitude d’un dispositif, d’un équipement ou d’un système à fonctionner de façon satisfaisante dans son environnement électromagnétique sans produire lui même des perturbations électromagnétiques intolérables pour tout ce qui se trouve dans cet environnement EMC The ability of equipments (or Systems) to operate satisfactorily in its electromagnetic environments without introducing intolerable disturbances to anything in that environment jean-charles.gautherot@wanadoo.fr CISEC: intégration systèmes et CEM phénomènes électromagnétiques 88/

ELECTRO MAGNETIC COMPATIBILITY Definition & related basic documents     Electromagnetic disturbance is any phenomenon that may degrade the performance of a device, equipment, or system or adversely affect living or inert matter DO 160 F (equipment) for civil aircraft MILSTD 461 E (equipment) & MIL STD 464 (system) for military qualification And many other documents: FCC, IEC , CISPR…….OTAN document (AETCP 500 & 250) including French document in the past such as GAM EG13 (AIR 7306 for military aircraft) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 89/

ELECTRO MAGNETIC COMPATIBILITY COUPLING MODE EMITTER CULPRIT interconnexion RECEIVER VICTIM masse supply radiation : (wire, antenna or aperture) towards (wire, antenna or aperture) conduction : towards supply or interconnecting cables CISEC: intégration systèmes et CEM phénomènes électromagnétiques 90/

ELECTRO MAGNETIC COMPATIBILITY 4 basic tests ref: DO 160 (for civil aircraft) & MILSTD 461 (for military aircraft) CEM Emission CE Section 19 Susceptibilité RE Section 21 CS Section 18 & 20 RS Section 20 CISEC: intégration systèmes et CEM phénomènes électromagnétiques 91/

Fundamental principle of the CEM: trilogy A B EMITTER CULPRIT RECEIVER VICTIM COUPLING Negative margin Positive margin Emission level Susceptibility level B disturbed B non disturbed frequency CISEC: intégration systèmes et CEM phénomènes électromagnétiques 92/

CEM: example limit for radiated emission taking into account radio receiver sensitivity an not only intrinsic EMC CISEC: intégration systèmes et CEM phénomènes électromagnétiques 93/

EMC: Type of signal which are measured, spectrum in frequency domain (radiation or conduction) There are narrow band signal and broadband signal (d is pulse duration at 50% &T is rise and fall time between 10 & 90 %) Example of unique ( non repetitive ) pulse spectrum amplitude in frequency domain is given for example in dBm or dBµV/m or dBµA /Hz Time to frequency representation CISEC: intégration systèmes et CEM phénomènes électromagnétiques 94/

EMC: BROADBAND or NARROWBAND ? Measurements value will vary with the width of the filter used with the spectrum analyzer CISEC: intégration systèmes et CEM phénomènes électromagnétiques 95/

EMC: measurement specification  In order to avoid misinterpretation in the value of amplitude measurement results, bandwidth filter and time between each frequency step used for emission are defined in normative document for different frequency band measurement. Example CISEC: intégration systèmes et CEM phénomènes électromagnétiques 96/

What’s About PED ? MAXIMUM VALUES L e v e l, d B u V /m Measured PEDs WB Switching Power Supplies and Video Dis play Sweeps 95 85 75 65 55 45 35 25 1E-2 1E-1 NB Local Oscillators and Clocks 1E0 1E1 1E2 Frequency, MHz 1E3 1E4 CISEC: intégration systèmes et CEM phénomènes électromagnétiques 97/

CEM & PED: front door and back door coupling  Front-Door coupling PED Undesired Emissions Coupled Through Fuselage Windows and Door Seams to Radio, Navigation, and Radar Antennas (receiving mode) transmodulation effect • • • • • • • • • • • •  • • 75 MHz: Marker Beacons 108-136 MHz: ILS Localizer, VDT, VOR, VHF Com, VDL 329-335 MHz: ILS Glide Slope 962-1215 MHz: DME (Military TACAN) 982 MHz: ADS-B UAT 1030, 1090 MHz: ATC & TCAS 1530-1610 MHz: Satellite Com 1575.42 MHz: GPS 4200-4400 MHz: Radar Altimeter 5030-5090 MHz: Microwave Landing System 5350-5470, 9300-9500, 15500-15700 MHz: Weather Radar Back-Door Coupling PED Undesired Emissions Coupled to Avionics Boxes PED Undesired Emissions Coupled to Avionics Wiring CISEC: intégration systèmes et CEM phénomènes électromagnétiques 98/

CEM: example of equipment conducted emission measurement Power supply switching fondamental & harmonics Microprocessor CISEC: intégration systèmes et CEM phénomènes électromagnétiques 99/

CEM: Example of radiated emission measurement CISEC: intégration systèmes et CEM phénomènes électromagnétiques 100/

CEM: Example of radiated susceptibility measurement in RADAR frequency domain on FADEC CISEC: intégration systèmes et CEM phénomènes électromagnétiques 101/

Test with Reverberating chamber by using cavity resonance frequencies (starting only above 6 times the first low resonance frequency can be used for radiated susceptibility but also for emission tests) Testing equipment or System Calibration for the Em. FIELD CISEC: intégration systèmes et CEM phénomènes électromagnétiques 102/

Example of Specific test which are not included in aeronautical norm or specification   This helicopter was used by EDF for the maintenance of electric line and the cleaning with KARCHER of Isolators The objective of test was to see if there is no misoperating of ECMU under High voltage & high magnetic field at low frequency (50 Hz) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 103/

ELECTROMAGNETIC PROTECTION: don’t forget embedded software  Software example: ECMU (Electronic control motor unit)      Tolerances accuracy (prediction of periodic maintenance) Gradient test Consistency test Numeric filtering Consequences   Many features Opposite part: • Response time • Memory size CISEC: intégration systèmes et CEM phénomènes électromagnétiques 104/

ELECTROMAGNETIC PROTECTION: overview of basic protections           Shielding Bonding Grounding Clamping Filtering Segregation Optical fiber link Clean and dirty zones design Balanced Hardening concept And…. CISEC: intégration systèmes et CEM phénomènes électromagnétiques 105/

Protection device:typical filter structure Linear filter are commonly used to protect equipment against the adverse effect of wire induced current in the frequency domain or of power switching supply rejected signal . Different structure are possible taking into account simultaneously source and load impedances in order to get the maximum mismatching CISEC: intégration systèmes et CEM phénomènes électromagnétiques 106/

Example of filter attenuation curve for different structure and of cells Nbr Note: in general cases attenuation curve are given for nominal value of source and load resistance but in the real practice it’s never the case in a large frequency domain CISEC: intégration systèmes et CEM phénomènes électromagnétiques 107/

Example of different filter set-up Coaxial structure reduce connection inductance CISEC: intégration systèmes et CEM phénomènes électromagnétiques 108/

Basic limitation of filter For the correct design of filters there are important parameter to take into account  For inductance: – Serial resistance (loss of nominal supply voltage) – Parasitic capacitance between wounding (high frequency limitation) – saturation of ferromagnetic material due to permanent supply current CC or CA – Ferromagnetic losses (EDDY current et hysteresis cycle) – Ferromagnetic material maxi temperature en temperature coefficient  For capacitance: – Parallel resistance (leak current) – Serial inductance of connection (high frequency limitation) – Breakdown voltage CC et CA – Diverted current for CA supply – Dielectric losses – Dielectric material maxi temperature en temperature coefficient CISEC: intégration systèmes et CEM phénomènes électromagnétiques 109/

Non linear devices basic set for protection in the time domain CISEC: intégration systèmes et CEM phénomènes électromagnétiques 110/

Non linear protections: typical value of different devices such as zener diodes, varistor or gaz spark CISEC: intégration systèmes et CEM phénomènes électromagnétiques 111/

Time domain pulses: in order to get a safe design, hypothesis of matching of source and load resistance is taken (max transmitted energy) CISEC: intégration systèmes et CEM phénomènes électromagnétiques 112/

Electromagnetic protection devices: design rules Protection against time domain threat: •LEMP •NEMP •ESD Protection against frequency domain threat: •HIRF •HPM CISEC: intégration systèmes et CEM phénomènes électromagnétiques 113/

PROTECTION DEVICES COMPREHENSIVE & CONSISTENT HARDENING CONCEPT CISEC: intégration systèmes et CEM phénomènes électromagnétiques 114/

Appendix Electromagnetic environment and tests Information necessary for a technical and commercial proposal CISEC: intégration systèmes et CEM phénomènes électromagnétiques 115/

Technical elements necessary to work out an estimate System Or Equipment Under test Test Program Technical & Commercial proposal Configurations Furniture's CISEC: intégration systèmes et CEM phénomènes électromagnétiques 116/

System or equipment under test      Equipment overall dimensions  Maximum ground metallic plane and direction of radiation VS equipment aircraft positionning Blowing/Cooling  Air or fluid Flow  intermittent operation or not Power supply  Permanent & peak power  Start current Cabling (representativeness)  Access, Break boxes Equipment mass  Handling (support, mounting)  Maximum load on floor and on ground metallic plane CISEC: intégration systèmes et CEM phénomènes électromagnétiques 117/

Equipment under test : configuration  How many Configurations ?  Different operating modes – Example: » light or full load (computer must operate and acquire external signal & data coming from sensors or simulators » Fault detection » susceptibility: signal of sensor adjusted to low tolerance value » emission: signal of sensor adjusted to high tolerance value » Energized or not or both  Software Version – Specific test or true and last flight version  Cables  With or without over shielding CISEC: intégration systèmes et CEM phénomènes électromagnétiques 118/

TEST PROGRAM  Applicable norms and documents    Severity and test procedures Progressive increase of test level ( 3dB? 6dB?….) Test file – From most severe to less severe : objective to get asap first results to modify the equipment – From less severe to most severe : demonstration to the buyer that first results are already positive  Correct operation checking before, during and after, tests   Acceptable or not susceptibility criteria definition Necessity to identify the origin of dysfunctions or breakdowns CISEC: intégration systèmes et CEM phénomènes électromagnétiques 119/

Furnitures/constraints  Stimulis   Means necessary to obtain representative operation – availibility – Particular software test – BUS access for spying data flow without disturbances Instrumentation   sensors: voltage, current, position, temperature etc. Internal accessibility CISEC: intégration systèmes et CEM phénomènes électromagnétiques 120/

CONCLUSION     Information's described previously very seldom appears in the request for proposal or are incomplete They are however necessary to determine the feasibility of the all tests which is not always acquired They have a direct impact over the duration of tests and thus on the cost the customer does not control all subtleties of the tests within a program. The tests center must also play the part of council Before providing a credible offer, one, even several meetings with the customer are necessary to tackle the problems mentioned above CISEC: intégration systèmes et CEM phénomènes électromagnétiques 121/

CONCLUSION &……. QUESTIONS According to the field of frequency to be treated Used tools for simulation will not be the same ones Necessity for designing electromagnetic protections in comprehensive & Consistent manner Whatever computer code has been used It is necessary to validate the ideal model using large Experimental simulators about the functional level: Role of the HARDWARE and SOFTWARE: Attention with the differences Between the TEST version for laboratory and the real embedded Version 80 to 90%of disturbances come from cables Future: Optical numeric BUS but mechanical, thermal properties and maintenance to be improved CISEC: intégration systèmes et CEM phénomènes électromagnétiques 122/

And perhaps for next CISEC conference cycle !!! CISEC: intégration systèmes et CEM phénomènes électromagnétiques 123/

Add a comment

Related presentations

Related pages

Aeronautics | LinkedIn

View 343749 Aeronautics posts, presentations, experts, and more. Get the professional knowledge you need on LinkedIn. ... 20140218 cisec-emc-in-aeronautics.
Read more

Aéronautics | LinkedIn

Articles, experts, jobs, and more: get all the professional insights you need on LinkedIn
Read more

Wiki: User talk:Bassguy6785 | BrokenControllers.com

Filename: Wiki: User talk:Bassguy6785 Downloaded: 1501 Times File ID: 6746558 Status: Available ... 20140218 cisec-emc-in-aeronautics - SlideShare:
Read more

Dollar Strengthens, Rupiah Could Rapidly Drop: Analyst ...

20140218 cisec-emc-in-aeronautics - SlideShare: Friction Road Map - keliapu.net: Firefighter Presumptions White Paper copyright: Stryker to buy Berchtold ...
Read more