12 Queuing and Capacity Planning

57 %
43 %
Information about 12 Queuing and Capacity Planning
Education

Published on January 7, 2008

Author: Gourangi

Source: authorstream.com

Queuing Models and Capacity Planning:  Queuing Models and Capacity Planning Learning Objectives:  Learning Objectives Discuss the strategic role of capacity planning. Describe a queuing model using A/B/C notation. Use queuing models to calculate system performance measures. Describe the relationships between queuing system characteristics. Use queuing models and various decision criteria for capacity planning. Capacity Planning Challenges:  Capacity Planning Challenges Inability to create a steady flow of demand to fully utilize capacity Idle capacity always a reality for services. Customer arrivals fluctuate and service demands also vary. Customers are participants in the service and the level of congestion impacts on perceived quality. Inability to control demand results in capacity measured in terms of inputs (e.g. number of hotel rooms rather than guest nights). Strategic Role of Capacity Decisions:  Strategic Role of Capacity Decisions Using long range capacity as a preemptive strike where market is too small for two competitors (e.g. building a luxury hotel in a mid-sized city) Lack of short-term capacity planning can generate customers for competition (e.g. restaurant staffing) Capacity decisions balance costs of lost sales if capacity is inadequate against operating losses if demand does not reach expectations. Strategy of building ahead of demand is often taken to avoid losing customers. Queuing System Cost Tradeoff:  Queuing System Cost Tradeoff Let: Cw = Cost of one customer waiting in queue for an hour Cs = Hourly cost per server C = Number of servers Total Cost/hour = Hourly Service Cost + Hourly Customer Waiting Cost TotalCost/hour = Cs C + Cw Lq Note: Only consider systems where Queuing Formulas:  Queuing Formulas Single Server Model with Poisson Arrival and Service Rates: M/M/1 1. Mean arrival rate: 2. Mean service rate: 3. Mean number in service: 4. Probability of exactly “n” customers in the system: 5. Probability of “k” or more customers in the system: 6. Mean number of customers in the system: 7. Mean number of customers in queue: 8. Mean time in system: 9. Mean time in queue: Queuing Formulas (cont.):  Queuing Formulas (cont.) Single Server General Service Distribution Model: M/G/1 Mean number of customers in queue for two servers: M/M/2 Relationships among system characteristics: Congestion as :  Congestion as 0 1.0 100 10 8 6 4 2 0 With: Then: 0 0 0.2 0.25 0.5 1 0.8 4 0.9 9 0.99 99 Foto-Mat Queuing Analysis:  Foto-Mat Queuing Analysis On average 2 customers arrive per hour at a Foto-Mat to process film. There is one clerk in attendance that on average spends 15 minutes per customer. 1. What is the average queue length and average number of customers in the system? 2. What is the average waiting time in queue and average time spent in the system? 3. What is the probability of having 2 or more customers waiting in queue? 4. If the clerk is paid $4 per hour and a customer’s waiting cost in queue is considered $6 per hour. What is the total system cost per hour? 5. What would be the total system cost per hour, if a second clerk were added and a single queue were used? White & Sons Queuing Analysis :  White & Sons Queuing Analysis White & Sons wholesale fruit distributions employ a single crew whose job is to unload fruit from farmer’s trucks. Trucks arrive at the unloading dock at an average rate of 5 per hour poisson distributed. The crew is able to unload a truck in approximately 10 minutes with exponential distribution. 1. On the average, how many trucks are waiting in the queue to be unloaded ? 2. The management has received complaints that waiting trucks have blocked the alley to the business next door. If there is room for 2 trucks at the loading dock before the alley is blocked, how often will this problem arise? 3. What is the probability that an arriving truck will find space available at the unloading dock and not block the alley? Capacity Analysis of Robot Maintenance and Repair Service:  Capacity Analysis of Robot Maintenance and Repair Service A production line is dependent upon the use of assembly robots that periodically break down and require service. The average time between breakdowns is three days with a poisson arrival rate. The average time to repair a robot is two days with exponential distribution. One mechanic repairs the robots in the order in which they fail. 1. What is the average number of robots out of service? 2. If management wants 95% assurance that robots out of service will not cause the production line to shut down due to lack of working robots, how many spare robots need to be purchased? 3. Management is considering a preventive maintenance (PM) program at a daily cost of $100 which will extend the average breakdowns to six days. Would you recommend this program if the cost of having a robot out of service is $500 per day? Assume PM is accomplished while the robots are in service. 4. If mechanics are paid $100 per day and the PM program is in effect, should another mechanic be hired? Consider daily cost of mechanics and idle robots. Determining Number of Mechanics to Serve Robot Line:  Determining Number of Mechanics to Serve Robot Line 1. Assume mechanics work together as a team Mechanics $100 M $500 Ls Total system in Crew (M) Mechanic cost Robot idleness Cost per day 100(1)=$100 500(1/2)=$250 $350 100(2)=$200 500(1/5)=$100 $300 100(3)=$300 500(1/8)=$62 $362 1 1/2 2 1 3 3/2 Determining Number of Mechanics to Serve Robot Line:  Determining Number of Mechanics to Serve Robot Line 2. Assume Robots divided equally among mechanics working alone Identical $100 n $500 Ls (n) Total System Queues (n) Mechanic Robot idleness Cost per day cost 1 1/ 6 $100 $250 $350 2 1/ 12 $200 500 (1/5) 2=$200 $400 Determining Number of Mechanics to Serve Robot Line:  Determining Number of Mechanics to Serve Robot Line 3. Assume two mechanics work alone from a single queue. Note: = 0.01 + 0.33 = 0.34 Total Cost/day = 100(2) + 500(.34) = 200 + 170 =$370 Comparisons of System Performance for Two Mechanics:  Comparisons of System Performance for Two Mechanics System Single Queue with Team Service 6/ 5 =1.2 days 0.2 days Single Queue with Multiple 6 (.34) = 2.06 days 0.06 days Servers Multiple Queue and Multiple 12 (1/5) =2.4 days 0.4 days Servers Single Server General Service Distribution Model : M/G/1:  Single Server General Service Distribution Model : M/G/1 1. For Exponential Distribution: 2. For Constant Service Time: 3. Conclusion: Congestion measured by Lq is accounted for equally by variability in arrivals and service times. General Queuing Observations:  General Queuing Observations 1. Variability in arrivals and service times contribute equally to congestion as measured by Lq. 2. Service capacity must exceed demand. 3. Servers must be idle some of the time. 4. Single queue preferred to multiple queue unless jockeying is permitted. 5. Large single server (team) preferred to multiple-servers if minimizing mean time in system, WS. 6. Multiple-servers preferred to single large server (team) if minimizing mean time in queue, WQ. Lq for Various Values of C and :  Lq for Various Values of C and Topics for Discussion:  Topics for Discussion Example 18.1 presented a naïve capacity planning exercise criticized for using averages. Suggest other reservations about this exercise. For a queuing system with a finite queue, the arrival rate can exceed the capacity. Explain with an example how this is possible. What are some disadvantages associated with the concept of pooling service resources? Discuss how one could determine the economic cost of keeping customers waiting.

Add a comment

Related presentations

Related pages

Service Management – Capacity Planning and Queuing Models

Capacity Planning and Queuing Models 11. Services and Information Systems 12. ... 19.01.12 Slide 5! 3) Economic View: Capacity Planning
Read more

Chapter 16 Capacity Planning and Queuing Models

Capacity Planning and Queuing Models . ... Capacity Planning ... 14-12 Queuing Formulas
Read more

Presentation "Capacity Planning and Queuing Models ...

Capacity Planning and Queuing Models. Learning Objectives n Discuss the strategic role of capacity planning. n Describe a queuing model ... 12 Determining ...
Read more

How to Do Capacity Planning - TeamQuest

How to Do Capacity Planning ... Two techniques for capacity planning that take queuing behavior into ... ow to o Capacity lannin 12
Read more

11 Queuing - Chapter 13: Capacity Planning and Queuing ...

Chapter 13: Capacity Planning and Queuing Models. Learning Objectves • Discuss The sTraTegic role of capaciTy planning. • Describe a queuing model ...
Read more

Timber Terminal Capacity Planning Through Queuing Theory

... 12, 147–161. doi:10 ... Timber Terminal Capacity Planning Through Queuing Theory ... Keywords: port, capacity planning, closed queuing network, ...
Read more

Application of Queuing Theory to Airport Related Problems

ACRP Problem No. 12-07-01 Application of Queuing Theory to ... AIRFIELD AND AIRSPACE CAPACITY ... queuing models us ed in the sketch planning and sizing ...
Read more

Lecture 5 Planning and Control 10 The nature of Planning ...

11 Capacity Planning and Control 12 Inventory Planning and Control ... PLANNING CONTROL ... Simple queuing system
Read more

IBM Systems Magazine - Capacity Planning 101

Capacity Planning 101. August 2003 ... let's provide some background knowledge on capacity planning and queuing theory. Capacity planning involves ...
Read more