# 11 x1 t01 03 factorising (2014)

56 %
44 %
Information about 11 x1 t01 03 factorising (2014)
Education

Published on January 30, 2014

Author: nsimmons

Source: slideshare.net

Factorising

Factorising 1) Look for a common factor

Factorising 1) Look for a common factor 2) (i) 2 terms  difference of two squares

Factorising 1) Look for a common factor 2) (i) 2 terms  difference of two squares  sum/difference of two cubes

Factorising 1) Look for a common factor 2) (i) 2 terms  difference of two squares  sum/difference of two cubes (ii) 3 terms  quadratic trinomial

Factorising 1) Look for a common factor 2) (i) 2 terms  difference of two squares  sum/difference of two cubes (ii) 3 terms  quadratic trinomial (iii) 4 terms  grouping in pairs

1. Common Factor factorising = dividing by common factor

1. Common Factor e.g. (i ) ax  bx factorising = dividing by common factor

1. Common Factor e.g. (i ) ax  bx  x  a  b  factorising = dividing by common factor

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x factorising = dividing by common factor

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  (iii ) mx  nx  my  ny factorising = dividing by common factor

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n 

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b 

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25 

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5 

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5  (iii ) 5 x  5 y  x 2  y 2

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5  (iii ) 5 x  5 y  x 2  y 2 =5  x  y    x  y  x  y 

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5  (iii ) 5 x  5 y  x 2  y 2 =5  x  y    x  y  x  y  =  x  y  5  x  y 

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   18 9

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3   18 9

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3 (ii ) t 2  4t  3   18 9

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3 (ii ) t 2  4t  3   18 9 3   4

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3 (ii ) t 2  4t  3   t  3 t  1   18 9 3   4

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3 (ii ) t 2  4t  3   t  3 t  1 (iii ) x 2  5 xy  4 y 2   18 9 3   4

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3 (ii ) t 2  4t  3   t  3 t  1   18 9 3   4 (iii ) x 2  5 xy  4 y 2   4 y 2   5 y

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3 (ii ) t 2  4t  3   t  3 t  1   18 9 3   4 (iii ) x 2  5 xy  4 y 2   4 y 2   x  y  x  4 y    5 y

b) Splitting the Middle

b) Splitting the Middle e.g. (i ) 3x 2  4 x  7

b) Splitting the Middle e.g. (i ) 3x  4 x  7 2   21 4 Multiply the constant by the coefficient of x squared 7  3

b) Splitting the Middle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4 2 Multiply the constant by the coefficient of x squared 7  3

b) Splitting the Middle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2 Multiply the constant by the coefficient of x squared 7  3

b) Splitting the Middle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2   x  1 3 x  7  Multiply the constant by the coefficient of x squared 7  3

b) Splitting the Middle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2   x  1 3 x  7  (ii ) 2 x 2  5 x  12 Multiply the constant by the coefficient of x squared 7  3

b) Splitting the Middle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2   x  1 3 x  7  (ii ) 2 x 2  5 x  12   24   5 Multiply the constant by the coefficient of x squared 7  3

b) Splitting the Middle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2   x  1 3 x  7    24 (ii ) 2 x 2  5 x  12  2 x 2  8 x  3 x  12   5 Multiply the constant by the coefficient of x squared 7  3

b) Splitting the Middle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2   x  1 3 x  7    24 (ii ) 2 x 2  5 x  12  2 x 2  8 x  3 x  12   5  2 x  x  4  3 x  4 Multiply the constant by the coefficient of x squared 7  3

b) Splitting the Middle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2   x  1 3 x  7    24 (ii ) 2 x 2  5 x  12  2 x 2  8 x  3 x  12   5  2 x  x  4  3 x  4   x  4  2 x  3 Multiply the constant by the coefficient of x squared 7  3

b) Splitting the Middle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2 Multiply the constant by the coefficient of x squared 7  3   x  1 3 x  7    24 (ii ) 2 x 2  5 x  12  2 x 2  8 x  3 x  12   5  2 x  x  4  3 x  4   x  4  2 x  3 Exercise 1C; 1e, 2f, 3d, 4ejo, 5adhkn, 6ace etc, 7ace etc, 8*bdfij

## Add a comment

 User name: Comment:

## Related presentations

#### Theory and practice of support recorded

December 12, 2018

#### Download Updated Microsoft 70-410 Dumps - 70-410 ...

December 12, 2018

#### ELECTRO THERAPY PHYSICS BASIC

December 12, 2018

#### Why data science is the best career_

December 12, 2018

#### Data Management Services - Data Management Service...

November 30, 2018

#### Want To Pass Cisco 300-115 Exam Questions Answers ...

December 10, 2018

## Related pages

### 11 x1 t01 03 factorising (2014) - Education - documents

1. Factorising 2. Factorising 1) Look for a common factor 3. Factorising 1) Look for a common factor 2) (i) 2 terms difference of two squares 4.

### 11 x1 t01 03 factorising (2014) - Education - docslide.us

3. Factorising 1) Look for a common factor 2) (i) 2 terms difference of two squares 4. Factorising 1) Look for a common factor 2) (i) 2 terms difference of ...