11 x1 t01 03 factorising (2014)

51 %
49 %
Information about 11 x1 t01 03 factorising (2014)
Education

Published on January 30, 2014

Author: nsimmons

Source: slideshare.net

Factorising

Factorising 1) Look for a common factor

Factorising 1) Look for a common factor 2) (i) 2 terms  difference of two squares

Factorising 1) Look for a common factor 2) (i) 2 terms  difference of two squares  sum/difference of two cubes

Factorising 1) Look for a common factor 2) (i) 2 terms  difference of two squares  sum/difference of two cubes (ii) 3 terms  quadratic trinomial

Factorising 1) Look for a common factor 2) (i) 2 terms  difference of two squares  sum/difference of two cubes (ii) 3 terms  quadratic trinomial (iii) 4 terms  grouping in pairs

1. Common Factor factorising = dividing by common factor

1. Common Factor e.g. (i ) ax  bx factorising = dividing by common factor

1. Common Factor e.g. (i ) ax  bx  x  a  b  factorising = dividing by common factor

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x factorising = dividing by common factor

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  (iii ) mx  nx  my  ny factorising = dividing by common factor

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n 

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b 

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25 

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5 

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5  (iii ) 5 x  5 y  x 2  y 2

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5  (iii ) 5 x  5 y  x 2  y 2 =5  x  y    x  y  x  y 

1. Common Factor e.g. (i ) ax  bx  x  a  b  (ii ) 5 x 2  10 x  5 x  x  2  factorising = dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y  2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5  (iii ) 5 x  5 y  x 2  y 2 =5  x  y    x  y  x  y  =  x  y  5  x  y 

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   18 9

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3   18 9

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3 (ii ) t 2  4t  3   18 9

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3 (ii ) t 2  4t  3   18 9 3   4

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3 (ii ) t 2  4t  3   t  3 t  1   18 9 3   4

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3 (ii ) t 2  4t  3   t  3 t  1 (iii ) x 2  5 xy  4 y 2   18 9 3   4

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3 (ii ) t 2  4t  3   t  3 t  1   18 9 3   4 (iii ) x 2  5 xy  4 y 2   4 y 2   5 y

3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab e.g. (i ) x 2  9 x  18   x  6  x  3 (ii ) t 2  4t  3   t  3 t  1   18 9 3   4 (iii ) x 2  5 xy  4 y 2   4 y 2   x  y  x  4 y    5 y

b) Splitting the Middle

b) Splitting the Middle e.g. (i ) 3x 2  4 x  7

b) Splitting the Middle e.g. (i ) 3x  4 x  7 2   21 4 Multiply the constant by the coefficient of x squared 7  3

b) Splitting the Middle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4 2 Multiply the constant by the coefficient of x squared 7  3

b) Splitting the Middle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2 Multiply the constant by the coefficient of x squared 7  3

b) Splitting the Middle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2   x  1 3 x  7  Multiply the constant by the coefficient of x squared 7  3

b) Splitting the Middle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2   x  1 3 x  7  (ii ) 2 x 2  5 x  12 Multiply the constant by the coefficient of x squared 7  3

b) Splitting the Middle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2   x  1 3 x  7  (ii ) 2 x 2  5 x  12   24   5 Multiply the constant by the coefficient of x squared 7  3

b) Splitting the Middle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2   x  1 3 x  7    24 (ii ) 2 x 2  5 x  12  2 x 2  8 x  3 x  12   5 Multiply the constant by the coefficient of x squared 7  3

b) Splitting the Middle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2   x  1 3 x  7    24 (ii ) 2 x 2  5 x  12  2 x 2  8 x  3 x  12   5  2 x  x  4  3 x  4 Multiply the constant by the coefficient of x squared 7  3

b) Splitting the Middle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2   x  1 3 x  7    24 (ii ) 2 x 2  5 x  12  2 x 2  8 x  3 x  12   5  2 x  x  4  3 x  4   x  4  2 x  3 Multiply the constant by the coefficient of x squared 7  3

b) Splitting the Middle   21 e.g. (i ) 3x  4 x  7  3x 2  3x  7 x  7   4  3 x  x  1  7  x  1 2 Multiply the constant by the coefficient of x squared 7  3   x  1 3 x  7    24 (ii ) 2 x 2  5 x  12  2 x 2  8 x  3 x  12   5  2 x  x  4  3 x  4   x  4  2 x  3 Exercise 1C; 1e, 2f, 3d, 4ejo, 5adhkn, 6ace etc, 7ace etc, 8*bdfij

Add a comment

Related presentations

Related pages

11 x1 t01 03 factorising (2014) - Education - documents

1. Factorising 2. Factorising 1) Look for a common factor 3. Factorising 1) Look for a common factor 2) (i) 2 terms difference of two squares 4.
Read more

11 x1 t01 03 factorising (2014) - Education - docslide.us

3. Factorising 1) Look for a common factor 2) (i) 2 terms difference of two squares 4. Factorising 1) Look for a common factor 2) (i) 2 terms difference of ...
Read more

11 X1 T01 03 factorising (2010) - Education - documents.mx

Share 11 X1 T01 03 factorising ... 11X1 T01 03 factorising (2011) 11 X1 T02 03 surds (2010) 11 x1 t16 03 indefinite integral (2013) 11 x1 t02 03 surds (2012)
Read more

11 x1 t01 01 algebra & indices (2014) - Education

1. Methods In Algebra Like terms can be added or subtracted, unlike terms cannot. 2. Index Laws a m a n a m n 3. Index Laws a m a n a m n a m a n a m n 4 ...
Read more