1. ih presentation singapore confernce mm

56 %
44 %
Information about 1. ih presentation singapore confernce mm
Education

Published on March 9, 2014

Author: cartik38

Source: slideshare.net

Exposure Risk Assessment Challenges: Occupational Hygiene in the Pharmaceutical and Chemical Industries AIHA 2013 Asia Pacific OH Conference, Singapore Maharshi Mehta, CSP, CIH President International Safety Systems, Inc., Washingtonville New York, USA www.issehs.com Samson Ponselvan Head, Corporate EHS Shasun Pharmaceuticals Limited, Chennai, India

Agenda: Two Part Presentation Part 1: Maharshi Mehta       Growing need for sustainable Industrial hygiene and process safety in Emerging Economies Introduction to potential health and process safety risk Risk Assessment and Risk Controls Challenges Encountered Approaches adopted Lessons Learned ©International Safety Systems, Inc. www.issehs.com

Part-2 : Samson - Agenda 1. Background /Introduction A. Why is this important ? B. HSE Trends in Asian countries C. IH in Pharma and Chemical industries 2. Challenges in managing potential health risks and solutions 3. Hierarchy of controls - At Source / At Path / At Work 4. IH Management System Models 5. Integration of IH and handling of potent APIs 6. Conclusion Slide 3

Introduction      Pharmaceutical manufacturing is growing 8% to 12% per year in emerging economies India is the world’s largest producer of bulk drugs Supply chain, third party manufacturing are increasing rapidly Outsourcing expected to exceed $53B More than 100 FDA-approved pharmaceutical facilities are in India- the largest number in any country outside the U.S 4

Infrastructure Pharma Manufacturing     Over 450 colleges/departments offering degree and other education programs in pharmaceutical science More than 50,000 students graduates/year Manufacturing equipment, containment technologies R&D centers , laboratories EHS      Two colleges offering Master in Industrial Hygiene Program 150 Industrial Hygienists for all companies in India total 5 CIHs Safety professionals or occupational physicians practicing IH No Accredited Lab for 5 API/Surrogate

Introduction-Pharmaceutical and Chemical Industries  Active Pharmaceutical Ingredient (API) Manufacturing similar to typical chemical industries – Bulk drug is manufactured – Potential process safety risk and chemical exposure risk is high – Large volume potential solid exposure risk is high after solid liquid separation  Formulation or Dosage Form – Solids and liquid pharmaceuticals are made – Potential solid API exposure risk is high ©International Safety Systems, Inc. www.issehs.com

API/Chemical Manufacturing –Process Safety – The highest priority Low flash points solvent. Most commonly used: – Toluene, Methanol, Dimethyl Formamide, Acetonitrile  Unit operations – Tanker unloading and tank farm, barrel transfer – Reactor vessel charging and cleaning – Solid liquid separation, distillation  Most common Contributory factors – Open handling of solvents – Validation of inerting – Non-conductive container handling – Effectiveness of grounding and bonding – “Explosion Proof” lighting ©International Safety Systems, Inc.  www.issehs.com

Example of Process Safety Incident A massive explosion and fire A massive explosion and fire gutted a pharmaceutical supply gutted a pharmaceutical supply plant, killing at least three people plant, killing at least three people and injuring more than two dozen and injuring more than two dozen others -- about 12 of them others -- about 12 of them critically. critically. A volatile mix of air and suspended dust caused the explosion The explosion was so powerful it blew doors open on houses more than a mile away and sent debris flying, with some pieces landing more than two miles away Authorities recommended residents within a mile radius around the plant to evacuate

Process Safety - Most common recommendations        Process safety risk is manageable Awareness and Risk Assessment (HAZOP) Storage tank integrity, flame arrestor breather valves, dyking Validation of inerting-flow rate, volume, O2<4%. Inerting of not just process vessels – Centrifuge Static electricity controls – Painted surfaces – Continuity, resistance and earthing Conductive containers Specifics on intrinsically safe lighting ©International Safety Systems, Inc. www.issehs.com

Industrial Hygiene Hazard Anticipation - Hazards likely to be present? Hazard Recognition - What are health hazards? Risk Evaluation - Exposed to health hazard? How much? Risk Control - How can exposure be reduced? So that…Health risk is minimized And potential for occupational illnesses, material loss are reduced and the company liability minimized

Hazards – Exposures – Controls - and Risk: example…Low Risk Compression Activity Health Hazard: API Enclosed compression machine Potential for exposure from fugitive emission Reduced risk due to effective use of airline respirator

Industrial Hygiene - Methodology (Compression)  Health Hazard Identification – Obtain hazard data for API from MSDS and label  Exposure/Risk Assessment – How frequently and how long compression machine is running? – How frequently compression machine is cleaned? – Are exposure controls effective in reducing exposure? – Are recommended RPE/PPEs used? – Is exposure monitoring conducted? – Is the exposure below OEG?

Hierarchy of Controls       Elimination – Avoid Compression? Substitution – Use of low potency compound? Process Changes – Vacuum transfer blend in compression hopper? – Not feasible due to business constraints e.g., product validation and registration process Engineering Controls – Complete enclosure of compression machine and tablet container? Administrative Controls – Reducing or restricting exposure duration? Personal Protective Equipment and Respiratory Protective Equipment – Eye Protection, cleaning disinfecting respirator, storing respirator in a zip lock plastic bag?

API Chemical Plants: Health Hazards - Solvents  Toluene and DMF – Potential reproductive hazards  Acetonitrile – CN formation    Tetrahydrofuran (also peroxide forming agent) Isopropanol Small Volume Highly Toxic compounds – Aniline – Iodine ©International Safety Systems, Inc. www.issehs.com

API/Chemical Plants: Solvent Exposure Potential to Exceed OEL     Solid liquid separation – Centrifuge - Manual digging Short term exposure – Tanker/barrel QC Sample taking, tanker hose disconnecting, residual tanker solvent collecting Reactor, vessel cleaning Distillation residue collection ©International Safety Systems, Inc. www.issehs.com

API/Chemical Plants: Solvent Exposure Controls     Agitated Nutche Filter/Filter Dryer in place of Centrifuge Tanker QC sample from bottom nozzle and not by opening dome Nitrogen for pushing solvents before opening hose after tanker unloading Local Exhaust Ventilation ©International Safety Systems, Inc. www.issehs.com

Acute Pharmacological Effects Health effects described in this and subsequent slides potentially could occur from overexposure when effective exposure controls are not in place. Pharma compound Exposure Incident: An operator working on the manufacture of a product containing Barbiturates was admitted to hospital in hypoglycaemic coma and the report of a study by the Pharma company found that operators absorbed through skin significant levels of Barbiturates. ©International Safety Systems, Inc. www.issehs.com

Hormones Endocrine Gland Hormone Pancreas Insulin Thyroid Triiodothyronine and thyroxine Adrenal Cortisol Ovary Estrogens (estradiol, estrone, estriol) Main function(s) Regulates blood sugar levels. Development of the brain and reproductive tract, and regulation of metabolism Immune suppression and stress response Growth promotion, maintain elasticity of connective tissues, preserve bone mass and, vascular compliance, Testosterone Testis Precursor for oestrogen and acts on libido. Testosterone Growth of male secondary sexual characteristics, sperm production and libido Dihydrotestosterone Placenta Progesterone Some male secondary sexual characteristics. Maintenance of pregnancy Overexposure to hormone during manufacturing, development and testing may result in elevated levels of hormone in the body and affect the normal functions of the related endocrine gland. ©International Safety Systems, Inc. www.issehs.com

Steroids – Health Effects  Male Employees: – Gynecomastia (excessive development of the mammary glands), decreased libido, reduced testicular size, increased pigmentation of the nipple area, nipple sensitivity, dysspermia (the occurrence of pain during ejaculation), weight loss, and headaches  Female Employees: – Menstrual disorders (such as increased flow or intermenstrual spotting), nausea, headaches, breast pain, leukorrhea (vaginal discharge), and swollen ankles  Adverse effect on skin such as acne and erythema ©International Safety Systems, Inc. www.issehs.com

Antibiotics - Health Effects  Allergic reactions: – Itching and redness of eyes, runny nose, skin rashes, asthma, anaphylaxis  Vitamin deficiency: – Workers with repeated exposure to antibiotics experience change in number and type of bacteria which are normally present in intestines which break down and absorb vitamins in intestines  Fungal infections: – Daily exposure to antibiotic dust can lead to fungal infections of the skin and nails. – Women workers may develop vaginal yeast infections following exposure to antibiotics ©International Safety Systems, Inc. www.issehs.com

Antineoplastic - Health Effects       Acute effects: severe soft-tissue damage, fetotoxicity, headaches, lightheadedness, dizziness, nausea and allergic reactions Effect on growth and reproduction of the normal cells as Cytotoxic drugs may not distinguish between normal and cancerous cells Other secondary malignancies, such as bladder cancer and lymphoma Chromosomal damage (e.g., Chlorambucil) Testicular and ovarian dysfunction, including sterility Biological effects (even at very low levels of absorption) ©International Safety Systems, Inc. www.issehs.com

OELs      Occupational Exposure Limits (OELs) Airborne concentration limit of a substance to which it is believed that a worker may be exposed, without adverse health effects, expressed as an average concentration. The time weighted average concentration for 8 hr work-day, 40 hour work-week , to which nearly all workers may be repeatedly exposed, day after day, without adverse effect. An OEL is substance-specific and is a level at which workplace exposure is expected to be without detectable pharmacological or toxicological effect in occupational circumstances. Industrial Hygienists conduct personal exposure monitoring to assess employees’ exposure relative to these levels. Exposure limits are not a fine line between safe and dangerous concentrations

Adjusted Occupational Exposure Limits (AOEL)* Activity Duration Up to 10 min > 10 to 30 min Activity Multiplier (AM) 5 3 From > 30 min up to 1 hour 2.5 From > 1 hour up to 2 hours 2 From > 2 hours up to 4 hours 1.5 From > 4 hours up to 8 hours 1 *AOEL = AM X OEL-TWA (basis ACGIH Excursion Limits) ©International Safety Systems, Inc. www.issehs.com

Occupational Exposure Bands (OEBs) – Categorization 5000 OEB 1 5000- 1000 ug/m3 Not harmful, not irritating, low pharmacological activity e.g. predicted therapeutic dose >100mg/day, Examples – many excipients 1000 OEB 2 1000 - 100 ug/m3 Harmful, may be irritant, Moderate pharmacological activity, predicted therapeutic dose >10 - 100mg/day, Examples – Loratadine 100 OEB 3 100 - 10 ug/m3 Moderate toxic and /or high pharmacological activity, predicted therapeutic dose >1–10mg/day, Respiratory sensitizers and potent dermal sensitizers, Severe irritants and corrosives, also default category, Examples – many penicillin & cephalosporin antibiotics 10 OEB 4 10 - 1 ug/m3 Toxic Serious irreversible effects, Carcinogens, Mutagens, Reproductive and Developmental Toxins, Potent respiratory sensitisers, predicted therapeutic dose ≤ 1mg/day, Examples –Corticosteroids, some oncology drugs ≤1 OEB 5 ≤1 ug/m3 ©International Safety Systems, Inc. www.issehs.com Extremely toxic and or extremely high pharmacological activity predicted therapeutic dose ≤ 1mg/day, Serious irreversible effects, Potent Carcinogens, Mutagens, Reproductive and Developmental Toxins, Examples - potent hormones or hormone effectors, select anti-cancer drugs

Risk Assessment Model  Most model considers – – – –  Potency Frequency duration of exposure Air-borne Potential Exposure Controls Formulation – Small volume, less frequency/duration high potent compounds considerations  Potential skin and ingestion risks are also critical Risk Ranking Criteria are summarized in next 3 ©International Safety Systems, Inc. www.issehs.com slides

High Potent Compound in Chemical Industries      Beryllium - OEL 2 ug/m3 Hex chrome – OEL 5 ug/m3 Ni Carbonyl – OEL 50 ppb Chloromethyl isothiazolone – Kethon – very low OEL used as biocide Bis chloromethyl ether OEL 1 ppb ©International Safety Systems, Inc. www.issehs.com

Rank Daily 1 2 3 4 Minimal (under 30 minutes) About 30 min to < 2 hour About ½ Shift (2 to 4 hours) About ¾ Shift (4 to 7 hours) 5 (over 7 hours) 6 7 Frequency Duration Weekly monthly Yearly Health Hazard Chemicals API OEL in range Any / Minimal Any / Minimal 3.1 to 10 mg/m3 OEB1, OEL >1000 µg/m3 Any / Minimal (under 20 (under 250 or > 1000 ppm (under 5 hours) hours) hours) OEL in range OEB 2, OEL 100 0.51 to 3 mg/m3 µg/m3 - 1000 5 to 15 hours 20 to 60 hours 250 to 500 or 101 to 1000 µg/m3 ppm per week per month hours per year OEL in range OEB 3, OEL 100 0.01 to 0.5 Use More µg/m3 - 1000 mg/m3 or 10 to 15 to 25 hours 60 to 80 hours Frequent µg/m3 100 ppm per week per month Basis OEL < 0.01 Use More OEB 3, OEL 10 mg/m3 or < 10 25 to 30 hours Use More Frequent µg/m3 - 100 µg/m3 ppm per week Frequent Basis Basis Use More OEB 4, OEL 1 Use More Use More Frequent µg/m3 - 10 µg/m3 Frequent Basis Frequent Basis Basis OEB 4, OEL 0.01 µg/m3 - 1 µg/m3 OEB 5, OEL < 0.01 µg/m3

Rank Airborne Potential Engineering Control Skin Exposure Skin Hazard 1 Low 2 Medium 3 Total enclosure validated by IH monitoring Total enclosure NOT validated Exposure Potential No skin hazard, temporary effects High 4 Moderate (LEV) validated Probable skin irritants, Short term materials may cause skin exposure dermatitis. 5 6 Moderate not Validated Will cause skin irritation, sensitizers, corrosives (acids, caustics, nickel). 7 8 Repeatedlong Skin exposure Non-fixed controls movable LEV 9 10 No controls Materials toxic to skin Skin exposure (ACGIH) Skin certain

Final Risk Ranking Criteria Description Final Risk Ranking Low Risk – process is well controlled and personal exposures are 1-100 obviously unlikely to become significant – no further action required other than periodic review 1 100Medium Risk - Further evaluation required by monitoring. 200 2 Potenial High risk - implement exposure controls, conduct 200- exposure monitoring, control employee exposure using 300 respiratory protection until engineering controls are implemented 3 > 300 Very High Risk -Implement exposure controls immediately 4 ©International Safety Systems, Inc. www.issehs.com

Quantitative Exposure Monitoring Sampling media Sampling pump Calibrator Sampling media

Important Considerations  What to sample? – Contaminants with higher degree of toxicity with potential for exposure identified during qualitative exposure assessment  Whom to sample? – Personnel potentially exposed to identified contaminants  Are all personnel required to be sampled? – No, sample few from those having similar exposures known as Similar Exposure Group (SEG) (e.g., charging personnel, Dispensing personnel)

Important Considerations    How many samples to be collected? – 6 (minimum) for each contaminant in SEG – Additional samples need to be collected for high potent compounds or when variability in exposure results is significant Where to sample? – Areas/activities/operations with potential for exposures defined during Industrial Hygiene Risk Assessment When should the sampling be done? – Representative sampling in all shifts – Different operators, different shifts ©International Safety Systems, Inc. www.issehs.com

Challenges in API Exposure Monitoring     OELs are not available for large number of APIs and intermediates Validated methods are not available for large number of API analysis Potent compounds require meticulous handling of samples to avoid cross contamination Limited accredited laboratories are available in USA for APIs – Each API employee and swab sampling method validation include sensitivity (LOQ lower than high API), desorption efficiency, number of spike samples and other critical parameters ©International Safety Systems, Inc. www.issehs.com

Addressing Challenges API Exposure Monitoring    Use validated methods and accredited lab with API analysis experience especially for highly potent APIs as employee health depends on the results Follow rigorous validated sampling methods to avoid sample contamination (disposal powder free gloves, plastic Ziplock bag for every sample) Use surrogate monitoring if API validated methods are not available ©International Safety Systems, Inc. www.issehs.com Implement Established Exposure Controls following Control Banding Approach

Surrogate Monitoring Good Practices Guidelines - ISPE     International Society for Pharmaceutical Engineering (ISPE) Standardized Measurement of Equipment Particulate Airborne Concentration (SMEPAC) Committee ISPE Good Practice Guide: Assessing the Particulate Containment Performance of Pharmaceutical Equipment Standardized method of measuring – Performance of containment systems against specific challenge – Establish an agreed and valid method that can be used to meet the requirements of practitioners and supplier organizations

Example of Laminar Flow Booth Surrogate Monitoring at LFB

API/Chemical Plants: Exposure Controls: Reactor Charging  Potential for exposure during: – Manual charging of solids – Handling of empty bags/super-sacks – (major source of exposure) Effective: Reactor Charging with LEV Very effective: Charging booth Empty bags collected in plastic bag from inside of glove box

API/Chemical Plants: Exposure Controls: Tanker Unloading Nitrogen – pushing residual chemical Secured connections with arrangement to rinse piping before disconnecting

API/Chemical Plants: Exposure Controls: Tanker Unloading Barrel Transfer of Chemicals Potential for exposure during transfer with left in hose A barrel decanting unit reduces leaks, spills and exposures Never to use air pressure

Dispensing and Weighing of Solids - Small Volume Not Effective: LFB are nt effective in reducing exposure below about 50 ug/m3 Dispense cell, isolator for high potent compounds

Solid Discharging Fully Contained Discharge Through Weigh Isolator

Ventilated Balance Safety Enclosure (VBSE)® – For High Potent Compounds in laboratory       Face velocity – Not too high – Not too low – 50 fpm to 70 fpm HEPA filtration Ducted Size of opening for weighing adjustable Air flow monitor and alarm Can be customized ©International Safety Systems, Inc. www.issehs.com

Efficient LEV design efficient LEV Efficient LEV powder coating

Principles of General Ventilation System     Maintain always negative air pressure in the contamination generating room with respect to rest of the building Replace exhaust air by make-up air Do not install an exhaust fan near an intake opening or window (e.g., contaminated air will be pulled back into building rather than exhausted) Ensure contaminated air does not pass through breathing zone

Efficient Local Exhaust Ventilation (LEV)     Inefficient ventilation system design is one of the most common walkthrough findings The designing contractors are often not knowledgeable of design principles Adequate capture efficiency has not been accomplished despite money spent in energy consumption Knowing basic principles of ventilation system helps in (a) modifying existing ventilation systems and (b) in guiding designing contractors towards efficient ventilation system design In an efficient LEV, energy consumption is minimum and contaminant removal from operator’s breathing zone is maximum

Hood Provide a flange or hood at the air inlet. 25% more energy is required to capture contaminates from the front, when a flange or hood is not provided Air is drawn from back side also Air drawn from front only Locate hood closed to contaminant generation Reduce distance if feasible Preferred

Hood Tapered hood are more efficient than right angle hoods Enclose sides as much as feasible Locate hood so that contaminants do not pass through the breathing zone of an operator

Duct Straight duct is more efficient than a duct with many bends and elbows. Smaller duct length and smoother duct surface improves efficiency Examples of inefficient ducts Abrupt change in duct diameter and branch entry reduce the efficiency For most of LEVs, round duct is preferred over rectangular duct –Prevents accumulation of solids –Makes less noise –Durable

Application of LEV Empty bags are placed in this large bag Solid charging Solid filling in drums Barrel decanting Glove box for highly toxic compounds Portable extractor

Ventilation measurements    Instruments used to measure face and duct velocities Velocity measurement on the face of the hood is best indicator of efficiency Depending on the face area, measure air velocity at several points on the face and determine average face velocity The face velocity to capture most of the contaminants is 100 f/min (0.5 m/sec) 11.1 Ventilation Log

Range of Capture Velocities Condition of Dispersion Examples Capture Velocity (f/min) Capture Velocity (m/sec) Released with practically no velocity into quiet air Evaporation from tanks; degreasing, etc. 100 0.5 Released at low velocity into moderately still air Spray booths; intermittent container filling; low speed conveyer transfers; welding; plating; pickling 100-200 0.5-1 Active generation into zone of rapid air motion Spray painting in shallow booths; barrel filling; conveyer loading; crushers 200-500 1-2.5

Range of Duct Velocities Material Example Duct Velocity (f/min) Duct velocity (m/sec) Vapors, gases All vapors and gases 1000-1500 5-7.5 Spray painting Paint aerosols 1000-3000 5-15 Fumes Lead, welding 1500-2000 7.5-10 Dry dusts Fine rubber dust 2500-3500 12.5-17.5 General industrial dust Clay dust, silica flour 3500-4000 17.5-20 Heavy dusts Sand blast dust 4000-4500 20-22.5 Heavy or moist dust Moist cement dusts 4500 + 22.5+

Measuring Ventilation System Performance Manometer/Magneh elic gauge that continuously measures pressure drop across filter. Assists in determining when to change filter

HVAC System and Dust Collectors      Directional flow in Room: Clean air flows top-down and contaminated air flows bottom-side, away from operator breathing zone Recirculation through HEPA filter is permitted for OEB1-2 Recirculated air from OEB 3 and 4 API Rooms through dual HEPA OEB 4 compounds, “Sink” airlock to provide negative pressure gradients from both process area and common corridor Bag-In/Bag-Out safe change system at exhaust grills to minimize duct contamination

Zoning for High Potent Compound Handling    Red – Potentially contaminated area – Not used for gowning Yellow – Less or no contamination – De-gowning area Green Zoning – Clean non-contaminated area – Paper work is done – Gowning is done ©International Safety Systems, Inc. www.issehs.com

Importance of Swab Sampling to determine degree of surface contamination      Determines degree of surface contamination Useful in determining if Green Zone is contaminated or not Contact Surfaces (door handles) Acceptable Surface Limits Lessons learned – Do no assume ethanol is good decontaminating agents for all APIs – Do not assume cleaning method has decontaminated areas ©International Safety Systems, Inc. www.issehs.com

Gowning –Degowning for High Potent Compounds  Two pairs of disposable – – –  Gloves Gowns Shoe Cover Disposal of outer pair after work is done in Red Zone just before entering Yellow Zone ©International Safety Systems, Inc. www.issehs.com

Challenges in Respiratory Protection  Variable Assigned Protection Factor for Powered Air Purifying Respirators – 50 to 1000  Disposable Vs. Reusable hood – Disposable preferred – cost is high – Reusable – API contamination of PAPR hood identified  Cleaning validation ©International Safety Systems, Inc. www.issehs.com

Challenges    Limited Resources – IH professionals QA in exposure assessment data Financial constrains – Price Controls – Competition     Manufacturing and outsourcing is increasing rapidly and corporate EHS and other resources are decreasing Trained corporate EHS professionals are unable to cop-up with demand for assistance Distance, time difference Limited sensitivity of site professionals to potent 59 compounds

Approaches: Corporate and Regional EHS       Commendable efforts Audits Regional training programs and meetings Strong contract manufacturing programs Emphasis on selection of credible, competent and cost-effective EHS service providers Providing limited financial support 60

Approaches  Education Programs in Industrial Hygiene – University Level – Pharma specific training modules  Managing cost effectively – Cost effective consulting – Exposure assessment strategy – three samples /HEG/API , never 1 sample – Analytical cost discounts – Return on investment (e.g., savings from loss of API) – Not loosing focus on QA 61

Approaches   Empowering region and manufacturing sites in EHS Training – – –  At the foundation of sustainable EHS program Site specific, anecdotal , workshop at the site One corporation spends closed to $1B in all training Qualitative Risk assessment and Control Banding – If exposure is obvious, why do monitoring? – Exposure control and then monitoring  Sanofi approach of Industrial Hygiene Education Academy 62

Approaches – Supply Chain      Corporate requirement for supplier to demonstrate exposure is below OEL through surrogate monitoring Corporate and third party due diligence audits Local services provider to do hand-holding for some time – On site training on process safety and IH – Limited exposure assessment – Periodic supervision – 7/24 support Limit number of suppliers based on EHS performance Shutting down operation when risk is imminent- provide limited assistance in reducing risk 63

Conclusions  Potential process safety and chemical exposure risks are high in pharmaceutical and chemical industries. The risks are manageable – – – –  Understanding and communicating Empowering line managers Capitalizing on available resources Implementing feasible risk control measures Potential risk is even higher at supply manufacturing sites. The risk is manageable – Effective auditing – Limited hand-holding ©International Safety Systems, Inc. www.issehs.com

Add a comment

Related presentations

Related pages

1. ih presentation singapore confernce mm - Education

1. Exposure Risk Assessment Challenges: Occupational Hygiene in the Pharmaceutical and Chemical Industries AIHA 2013 Asia Pacific OH Conference, Singapore ...
Read more

1. ih presentation singapore confernce mm - Education

1. Exposure Risk Assessment Challenges: Occupational Hygiene in the Pharmaceutical and Chemical Industries AIHA 2013 Asia Pacific OH Conference, Singapore ...
Read more

IH - Documents

1. International Hotel& Restaurant Association 65 Years of Serviceto the Global Hospitality Industry 2. 3. Impact of Natural Disasters, ... Share IH. Embed ...
Read more

Presentation Mm 1 - Documents

Documents; Presentation Mm 1; ... × Close Share Presentation Mm 1. ... 1. ih presentation singapore confernce mm. Mm Presentation.
Read more

Case IH - Documents - Docslide.net

CASE IH INTERNATIONAL PARTS LIST ... 82241 5724 N.P.N. 585 DI L/M 1 CASE IH INTERNATIONAL PARTS ... Ih presentation-singapore-confernce-mm ...
Read more

ACMMM2015 ACM Multimedia Conference 2015

ACM Multimedia 2015 has been successfully hosted in Brisbane, ... 1: Best Paper Analyzing ... (National University of Singapore) 5: ...
Read more

CASE - Home

We rarely were able to participate in CASE webinars, and I know my team will be excited to use this new benefit regularly." Get Involved. Twitter Chats;
Read more

IHI Home Page

IHI CEO Derek Feeley notes that now is a time for those working in health care to be bold and innovative, and to demonstrate resilience and resolve. ...
Read more