1.7

40 %
60 %

Published on September 22, 2008

Author: netzwellenedu

Source: slideshare.net

AIM: How can we measure the evolution of populations? Warm – up: List the 5 factors in which evolution can occur

Populations & Gene Pools

Populations & Gene Pools • Concepts – a population is a localized group of interbreeding individuals – gene pool is collection of alleles in the population • remember difference between alleles & genes! – allele frequency is how common is that allele in the population • how many A vs. a in whole population

Evolution of Populations

Evolution of Populations • Evolution = change in allele frequencies in a population – hypothetical: what conditions would cause allele frequencies to not change? – non-evolving population REMOVE all agents of evolutionary change 1. very large population size (no genetic drift) 2. no migration (no gene flow in or out) 3. no mutation (no genetic change) 4. random mating (no sexual selection) 5. no natural selection (everyone is equally fit)

Hardy-Weinberg Equilibrium G.H. Hardy W. Weinberg mathematician physician

Hardy-Weinberg Equilibrium • Hypothetical, non-evolving population – preserves allele frequencies • Serves as a model (null hypothesis) – natural populations rarely in H-W equilibrium – useful model to measure if forces are acting on a population • measuring evolutionary change G.H. Hardy W. Weinberg mathematician physician

Hardy-Weinberg Theorem BB Bb bb

Hardy-Weinberg Theorem • Counting Alleles BB Bb bb

Hardy-Weinberg Theorem • Counting Alleles – assume 2 alleles = B, b BB Bb bb

Hardy-Weinberg Theorem • Counting Alleles – assume 2 alleles = B, b – frequency of dominant allele (B) = p BB Bb bb

Hardy-Weinberg Theorem • Counting Alleles – assume 2 alleles = B, b – frequency of dominant allele (B) = p – frequency of recessive allele (b) = q BB Bb bb

Hardy-Weinberg Theorem • Counting Alleles – assume 2 alleles = B, b – frequency of dominant allele (B) = p – frequency of recessive allele (b) = q • frequencies must add to 1 (100%), so: BB Bb bb

Hardy-Weinberg Theorem • Counting Alleles – assume 2 alleles = B, b – frequency of dominant allele (B) = p – frequency of recessive allele (b) = q • frequencies must add to 1 (100%), so: p+q=1 BB Bb bb

Hardy-Weinberg Theorem BB Bb bb

Hardy-Weinberg Theorem • Counting Individuals BB Bb bb

Hardy-Weinberg Theorem • Counting Individuals – frequency of homozygous dominant: p x p = p2 BB Bb bb

Hardy-Weinberg Theorem • Counting Individuals – frequency of homozygous dominant: p x p = p2 – frequency of homozygous recessive: q x q = q2 BB Bb bb

Hardy-Weinberg Theorem • Counting Individuals – frequency of homozygous dominant: p x p = p2 – frequency of homozygous recessive: q x q = q2 – frequency of heterozygotes: (p x q) + (q x p) = 2pq BB Bb bb

Hardy-Weinberg Theorem • Counting Individuals – frequency of homozygous dominant: p x p = p2 – frequency of homozygous recessive: q x q = q2 – frequency of heterozygotes: (p x q) + (q x p) = 2pq • frequencies of all individuals must add to 1 (100%), so: BB Bb bb

Hardy-Weinberg Theorem • Counting Individuals – frequency of homozygous dominant: p x p = p2 – frequency of homozygous recessive: q x q = q2 – frequency of heterozygotes: (p x q) + (q x p) = 2pq • frequencies of all individuals must add to 1 (100%), so: p2 + 2pq + q2 = 1 BB Bb bb

H-W Formulas BB Bb bb

H-W Formulas • Alleles: p+q=1 BB Bb bb

H-W Formulas • Alleles: p+q=1 B BB Bb bb

H-W Formulas • Alleles: p+q=1 B b • Individuals: p2 + 2pq + q2 = 1 BB Bb bb

H-W Formulas • Alleles: p+q=1 B b • Individuals: p2 + 2pq + q2 = 1 BB BB Bb bb

H-W Formulas • Alleles: p+q=1 B b • Individuals: p2 + 2pq + q2 = 1 BB bb BB Bb bb

H-W Formulas • Alleles: p+q=1 B b • Individuals: p2 + 2pq + q2 = 1 BB Bb bb BB Bb bb

Using Hardy-Weinberg Equation BB Bb bb

Using Hardy-Weinberg Equation population: 100 cats 84 black, 16 white How many of each genotype? BB Bb bb

Using Hardy-Weinberg Equation population: 100 cats q2 (bb): 16/100 = . 84 black, 16 white 16 How many of each q (b): √.16 = 0.4 genotype? p (B): 1 - 0.4 = 0.6 BB Bb bb What are the genotype frequencies?

Using Hardy-Weinberg Equation population: 100 cats q2 (bb): 16/100 = . 84 black, 16 white 16 How many of each q (b): √.16 = 0.4 genotype? p (B): 1 - 0.4 = 0.6 BB Bb bb Must are the population is in H-W equilibrium! What assume genotype frequencies?

Using Hardy-Weinberg Equation population: 100 cats q2 (bb): 16/100 = . 84 black, 16 white 16 How many of each q (b): √.16 = 0.4 genotype? p (B): 1 - 0.4 = 0.6 p2=.36 BB Bb bb Must are the population is in H-W equilibrium! What assume genotype frequencies?

Using Hardy-Weinberg Equation population: 100 cats q2 (bb): 16/100 = . 84 black, 16 white 16 How many of each q (b): √.16 = 0.4 genotype? p (B): 1 - 0.4 = 0.6 p2=.36 2pq=.48 BB Bb bb Must are the population is in H-W equilibrium! What assume genotype frequencies?

Using Hardy-Weinberg Equation population: 100 cats q2 (bb): 16/100 = . 84 black, 16 white 16 How many of each q (b): √.16 = 0.4 genotype? p (B): 1 - 0.4 = 0.6 p2=.36 2pq=.48 q2=.16 BB Bb bb Must are the population is in H-W equilibrium! What assume genotype frequencies?

Using Hardy-Weinberg Equation p2=.36 2pq=.48 q2=.16 Assuming BB Bb bb H-W equilibrium

Using Hardy-Weinberg Equation p2=.36 2pq=.48 q2=.16 Assuming BB Bb bb H-W equilibrium Null hypothesis

Using Hardy-Weinberg Equation p2=.36 2pq=.48 q2=.16 Assuming BB Bb bb H-W equilibrium Null hypothesis BB Bb bb

Using Hardy-Weinberg Equation p2=.36 2pq=.48 q2=.16 Assuming BB Bb bb H-W equilibrium Null hypothesis BB Bb bb Sampled data

Using Hardy-Weinberg Equation p2=.36 2pq=.48 q2=.16 Assuming BB Bb bb H-W equilibrium Null hypothesis p2=.74 2pq=.10 q2=.16 BB Bb bb Sampled data How do you explain the data?

Using Hardy-Weinberg Equation p2=.36 2pq=.48 q2=.16 Assuming BB Bb bb H-W equilibrium Null hypothesis p2=.20 =.74 2pq=.64 2pq=.10 q2=.16 BB Bb bb Sampled data How do you explain the data?

Application of H-W Principle

Application of H-W Principle • Sickle cell anemia

Application of H-W Principle • Sickle cell anemia – inherit a mutation in gene coding for hemoglobin

Application of H-W Principle • Sickle cell anemia – inherit a mutation in gene coding for hemoglobin • oxygen-carrying blood protein

Application of H-W Principle • Sickle cell anemia – inherit a mutation in gene coding for hemoglobin • oxygen-carrying blood protein • recessive allele = HsHs

Application of H-W Principle • Sickle cell anemia – inherit a mutation in gene coding for hemoglobin • oxygen-carrying blood protein • recessive allele = HsHs – normal allele = Hb

Application of H-W Principle • Sickle cell anemia – inherit a mutation in gene coding for hemoglobin • oxygen-carrying blood protein • recessive allele = HsHs – normal allele = Hb – low oxygen levels causes RBC to sickle

Application of H-W Principle • Sickle cell anemia – inherit a mutation in gene coding for hemoglobin • oxygen-carrying blood protein • recessive allele = HsHs – normal allele = Hb – low oxygen levels causes RBC to sickle • breakdown of RBC

Application of H-W Principle • Sickle cell anemia – inherit a mutation in gene coding for hemoglobin • oxygen-carrying blood protein • recessive allele = HsHs – normal allele = Hb – low oxygen levels causes RBC to sickle • breakdown of RBC • clogging small blood vessels

Application of H-W Principle • Sickle cell anemia – inherit a mutation in gene coding for hemoglobin • oxygen-carrying blood protein • recessive allele = HsHs – normal allele = Hb – low oxygen levels causes RBC to sickle • breakdown of RBC • clogging small blood vessels • damage to organs

Application of H-W Principle • Sickle cell anemia – inherit a mutation in gene coding for hemoglobin • oxygen-carrying blood protein • recessive allele = HsHs – normal allele = Hb – low oxygen levels causes RBC to sickle • breakdown of RBC • clogging small blood vessels • damage to organs – often lethal

Sickle cell Frequency

Sickle cell Frequency • High frequency of heterozygotes – 1 in 5 in Central Africans = HbHs – unusual for allele with severe detrimental effects in homozygotes • 1 in 100 = HsHs • usually die before reproductive age Why is the Hs allele maintained at such high levels in African populations?

Sickle cell Frequency • High frequency of heterozygotes – 1 in 5 in Central Africans = HbHs – unusual for allele with severe detrimental effects in homozygotes • 1 in 100 = HsHs • usually die before reproductive age Why is the Hs allele maintained at such high levels in African populations? Suggests some selective advantage of being heterozygous…

Malaria 1 2 3

Malaria eukaryote parasite Single-celled (Plasmodium) spends part of its life cycle in red blood cells 1 2 3

Malaria eukaryote parasite Single-celled (Plasmodium) spends part of its life cycle in red blood cells 1 2 3

Malaria eukaryote parasite Single-celled (Plasmodium) spends part of its life cycle in red blood cells 1 2 3

Malaria eukaryote parasite Single-celled (Plasmodium) spends part of its life cycle in red blood cells 1 2 3

Heterozygote Advantage Frequency of sickle cell allele & distribution of malaria

Heterozygote Advantage • In tropical Africa, where malaria is common: Frequency of sickle cell allele & distribution of malaria

Heterozygote Advantage • In tropical Africa, where malaria is common: – homozygous dominant (normal) die of malaria: HbHb Frequency of sickle cell allele & distribution of malaria

Heterozygote Advantage • In tropical Africa, where malaria is common: – homozygous dominant (normal) die of malaria: HbHb – homozygous recessive die of sickle cell anemia: HsHs Frequency of sickle cell allele & distribution of malaria

Heterozygote Advantage • In tropical Africa, where malaria is common: – homozygous dominant (normal) die of malaria: HbHb – homozygous recessive die of sickle cell anemia: HsHs – heterozygote carriers are relatively free of both: HbHs Frequency of sickle cell allele & distribution of malaria

Heterozygote Advantage • In tropical Africa, where malaria is common: – homozygous dominant (normal) die of malaria: HbHb – homozygous recessive die of sickle cell anemia: HsHs – heterozygote carriers are relatively free of both: HbHs • survive more, more common in population Hypothesis: In malaria-infected cells, the O2 level is lowered enough to cause sickling which kills the cell & destroys the parasite. Frequency of sickle cell allele & distribution of malaria

Any Questions??

 User name: Comment:

Related pages

Opel Astra 1.7 CDTI Gebrauchtwagen – mobile.de

Sie suchen einen Opel Astra 1.7 CDTI in Ihrer Nähe? Finden Sie Opel Astra 1.7 CDTI Angebote in allen Preiskategorien bei mobile.de – Deutschlands ...

Minecraft, Download kostenlos. Minecraft 1.9: Online-Abenteuer in einer bunten Würfel-Welt. Das Erfolgsspiel Minecraft weckt die Kreativität im Spieler.

Pressemitteilungen - Ehescheidungen nahmen 2015 um 1,7 % ...

WIESBADEN – Im Jahr 2015 wurden in Deutschland 163 335 Ehen geschieden, das waren 1,7 % weniger als im Vorjahr. Wie das Statistische Bundesamt (Destatis ...

Patch 1.7 für Call of Duty 4: Modern WarfareHinweis: Patch 1.6 muss bereits installiert sein!* Fixed an exploit that allowed players to access ...

WMF Wasserkocher Stelio, 1,7 L, 2400 Watt, Edelstahl ...

WMF Wasserkocher Stelio, 1,7 L, 2400 Watt, Edelstahl für 49,90€. Mit beleuchtetem Innenraum, Einhanddeckelöffnung per Knopfdruck, 2400 Watt Leistung ...

harry potter 1-7 | eBay

Tolle Angebote bei eBay für harry potter 1-7 harry potter 1-7 dvd. Sicher einkaufen.

VIG - nichtamtliches Inhaltsverzeichnis

Gesetz zur Verbesserung der gesundheitsbezogenen Verbraucherinformation zur Gesamtausgabe der Norm im Format: HTML PDF XML EPUB

Versionsgeschichte/Vollversion 1.7 – Das offizielle ...

25. Oktober 2013: Der Screenshot zur Releaseveröffentlichung aus dem Mojang-Blog 1.7.2 [Bearbeiten | Quelltext bearbeiten] (Enthält 1.7 und 1.7.1)