09 boni vulnerabilita sismica-ws2014

56 %
44 %
Information about 09 boni vulnerabilita sismica-ws2014
Education

Published on March 9, 2014

Author: LucaMarescotti

Source: slideshare.net

S 2014 Workshop Conoscenza e tecnologie appropriate per la sostenibilità e la resilienza in urbanistica Knowledge and Appropriate Technologies for Sustainability and Resilience in Planning Funda Atun, Maria Pia Boni, Annapaola Canevari, Massimo Compagnoni, Luca Marescotti, Maria Mascione, Ouejdane Mejri, Scira Menoni, Floriana Pergalani

LAUREA MAGISTRALE DELLA SCUOLA DI ARCHITETTURA E SOCIETÀ Laboratorio organizzato da Luca Marescotti

Cover 2014 Workshop Conoscenza e tecnologie appropriate per la sostenibilità e la resilienza in urbanistica - Knowledge and Appropriate Technologies for Sustainability and Resilience in Planning 5 marzo 2014 Maria Pia Boni Vulnerabilità sismica di edifici

IL CONCETTO DI VULNERABILITÀ Esistono molti modi di intendere la vulnerabilità (in questo caso sismica) che dipendono, oltre che dalla “scuola di pensiero”, da cosa si intende valutare e dal punto di vista che si intende assumere, ad esempio: Vulnerabilità fisica (di un edificio, di un impianto, di un versante, …) Vulnerabilità funzionale (di un ospedale, di un acquedotto, …) Vulnerabilità sistemica (combinazione degli aspetti di vulnerabilità che caratterizzano un sistema complesso,…) Vulnerabilità socio- economica (di una città, di una nazione, …) Vulnerabilità organizzativa (di un sistema di gestione, …) Vulnerabilità di un sistema urbano (analisi delle diverse componenti, relazioni, funzionalità di un intero sistema urbano) ….

Esempi di danni agli edifici Edificio in c.a. di tre piani caratterizzato da un meccanismo di piano soffice. Pettino (AQ) Particolare della colonna d’angolo. Si evidenzia la totale assenza di staffe nel nodo trave-colonna Foto di P. Ricci e G.M. Verderame

Esempi di danni agli edifici Edificio in c.a. di tre piani caratterizzato da un meccanismo di piano soffice. Pettino (AQ) Il piano terra a differenza dei restanti piani è caratterizzato da ampie aperture (ingresso edificio e garage); la richiesta di spostamento si è concentrata al piano terra. Foto di P. Ricci e G.M. Verderame

Esempi di danni agli edifici Interazione pilastrotamponamento rigido sotto finestra.

Esempi di danni agli edifici Stairs damage Shear failure of a short column in the staircase. Photo by G. De Carlo and G.M. Verderame

Esempi di danni agli edifici

Esempi di danni agli edifici Danneggiamento delle tamponature: edificio in calcestruzzo armato di quattro piani Sono evidenti le tipiche fessurazione diagonali presenti sulle tamponature dei primi due livelli

Esempi di danni agli edifici Danneggiamento delle tamponature: edificio in calcestruzzo armato di quattro piani Espulsione della fodera esterna della tamponatura presente al secondo e al terzo livello. Foto di P. Ricci e G.M. Verderame

Esempi di danni agli edifici

DEFINIZIONE ADOTTATA VULNERABILITÀ SISMICA Propensione di un determinato oggetto o sistema, ad essere danneggiato a causa di un evento sismico NB: E’ una caratteristica intrinseca dell’oggetto, non dipende dalla pericolosità e non bisogna confonderla con il danno E’ un’analisi che si compie in “tempo di pace”, non è da confondere con la valutazione dell’agibilità post-sisma

VALUTAZIONE DELLA VULNERABILITÀ Individuazione di una relazione tra una misura della qualità della costruzione (q), una misura della severità del terremoto che la può colpire (s) ed il danno che ne conseguirebbe (d) d = f (q, s)

VULNERABILITÀ E RISCHIO SISMICO PERICOLOSITA’ DI BASE PERICOLOSITA’ LOCALE VULNERABILITA’ RISCHIO SISMICO

MOLTEPLICITÀ DI APPROCCI Scelta influenzata da molti fattori:  obiettivo dello studio  scala di analisi  numero di edifici da valutare  tempi disponibili (solitamente limitati)  risorse disponibili (solitamente limitate)

CLASSIFICAZIONE DEI METODI DI VALUTAZIONE In base al tipo di risultato che viene prodotto:  tecniche dirette: forniscono in un solo passo un risultato consistente in una effettiva previsione dei danni provocati dai terremoti  tecniche indirette: si articolano in due passi, a ciascuno dei quali corrisponde un risultato. Nel primo passo si determina un opportuno indice di vulnerabilità V; nel secondo, si istituisce una correlazione fra terremoti e danni, in funzione dell'indice  tecniche convenzionali: si esauriscono in un unico passo ma il loro risultato è un indice di vulnerabilità al quale non associano una previsione di danno; esse sono utili sostanzialmente per confrontare edifici diversi ubicati in aree di uguale sismicità

CLASSIFICAZIONE DEI METODI DI VALUTAZIONE In base al tipo di misura che viene utilizzato  tecniche quantitative: esprimono le probabilità di danno o le equivalenti relazioni deterministiche in termini numerici (sono quelle ordinariamente ricorrenti)  tecniche qualitative: ricorrono invece a descrizioni in termini di vulnerabilità "bassa", "media", "alta“, e simili

CLASSIFICAZIONE DEI METODI DI VALUTAZIONE In base alla fonte di conoscenza prevalente  tecniche basate sulla elaborazione statistica di dati rilevati  tecniche basate sul calcolo della risposta sismica  tecniche basate sul giudizio soggettivo di esperti  tecniche ibride che combinano più fonti

CLASSIFICAZIONE DEI METODI DI VALUTAZIONE In base all'organismo al quale viene assimilato l'edificio  tecniche tipologiche: considerano l'edificio come membro indifferenziato di una classe tipologica, definita in funzione dei materiali, della tecnica costruttiva o di altri fattori  tecniche meccanicistiche: sostituiscono all'edificio un suo modello meccanico teorico (sono le più vicine all'usuale approccio ingegneristico alla valutazione della sicurezza)  tecniche semeiotiche: considerano l'edificio come un organismo la cui vulnerabilità può essere descritta attraverso sintomi. In generale, esse introducono un certo numero di fattori di vulnerabilità. Per ciascun fattore viene assegnato all'edificio un certo livello; l'incremento dei livelli denuncia un incremento di vulnerabilità

CLASSIFICAZIONE DEI METODI DI VALUTAZIONE Tecniche tipologiche PREGI: poco costose e richiedono indagini piuttosto semplici; fruiscono di notevoli basi di dati DIFETTI: non distinguono i singoli edifici all'interno di una classe non consentendo di definire una graduatoria fra di essi; difficile esportabilità PREGI: elevato grado di dettaglio delle informazioni ottenibili Tecniche meccanicistiche DIFETTI: richiedono che nel fabbricato sia individuabile uno schema statico sufficientemente chiaro PREGI: potenzialmente molto versatili, perché usano il più grande numero di informazioni dei fabbricati esaminati Tecniche semeiotiche DIFETTI: implicano una certa perizia da parte di chi opera sul campo; la loro affidabilità dipende dalla razionale esplicitazione di una relazione fra i livelli ed i danni sismici attesi

APPROCCIO TIPOLOGICO d = f (q, s) q ⇒ classe tipologica s ⇒ intensità macrosismica d ⇒ stato di danno Si definiscono le classi tipologiche degli edifici e quindi, dall’analisi dei danni occorsi in terremoti passati, si ricavano per le classi le matrici di probabilità di danno in funzione dei livelli intensità sismica

APPROCCIO TIPOLOGICO: definizione delle classi L’assegnazione di un edificio ad una classe tipologica viene attribuita sulla base del riconoscimento di alcune caratteristiche della struttura (di solito materiale impiegato e struttura verticale) Anche in diverse scale macrosismiche sono definite classi tipologiche Esempio: scala MSK (Medvedev - Sponheur – Karnik) A: costruzione in pietrame naturale, strutture in argilla, costruzioni con mattoni di creta e paglia, case in mattoni crudi o con malta di argilla, case con argilla e limo. B: costruzioni in mattoni comuni, in grossi blocchi, in muratura con telai legname, costruzioni in pietra squadrata. di C: costruzioni prefabbricate con struttura in calcestruzzo, costruzioni prefabbricate a larghi pannelli, strutture in legno ben fatte.

SCALA MACROSISMICA MSK (stralcio) I grado … V grado … VIII Grado … XI grado SCOSSA NON PERCEPIBILE L'intensità della vibrazione è al disotto dei limite della sensibilità ed è avvertita e registrata soltanto dagli strumenti sismici SCOSSA FORTE a) La scossa è avvertita dalla maggior parte delle persone all’interno delle case, da molti all'aperto. Molti dormienti si svegliano. Qualcuno scappa fuori dalla casa, gli animali diventano inquieti. Si verifica un tremore dell'intero edificio. Oggetti sospesi oscillano considerevolmente. I quadri si spostano. Gli orologi a pendolo possono fermarsi. Oggetti poco stabili possono cadere o ruotare. Porte e scuri di finestre aperti sbattono, liquidi che riempiono serbatoi (o recipienti) traboccano in piccola misura. La vibrazione è forte e dà la stessa sensazione della caduta in casa di un oggetto pesante. b) Possibili danni di categoria 1 ad alcuni edifici di tipo A. c) In qualche sorgente si nota una variazione di portata DISTRUZIONE DI EDIFICI a) Spavento generale, alcune persone sono nel panico. Anche le persone che guidano auto sono disturbate. Qua e là si staccano rami di alberi. Anche la mobilia si muove e in parte si rovescia. In parte i lampadari sono danneggiati. b) I danni possono cosi riassumersi:la maggior parte degli edifici del tipo C subisce danni della categoria 2 e pochi anche della categoria 3. La maggior parte degli edifici del tipo B subisce danni della categoria 3 e pochi di categoria 4. La maggior parte degli edifici del tipo A subisce danni della categoria 4 e pochi di categoria 5. Si storcono e si spostano monumenti e statue; pietre sepolcrali crollano. Crollano muri di pietre. c) Piccoli franamenti in scavi o in rilevati stradali con scarpate ripide. Nel terreno si formano crepe di qualche centimetro di larghezza. L'acqua nei laghi si intorbida. Si formano nuovi laghi. Sorgenti si estinguono o cominciano a sgorgare; molte volte variano le loro portate e le quote a cui emergono. CATASTROFE Anche qui non sono considerati più gli effetti sugli uomini e sugli animali. Perciò si considerano le sole lettere b) e c). a) Distruzione della maggior parte e collasso di molti edifici di tipo C. Anche ponti e dighe ben costruiti possono essere distrutti, rotaie contorte. Strade si rendono inutilizzabili. Distrutte condutture sotterranee. b) Numerose modifiche dei terreno dovute a crepe, fratture e movimenti sia orizzontali sia verticali; numerosi franamenti di vario tipo. L'intensità del terremoto richiede ricerche speciali.

APPROCCIO TIPOLOGICO: definizione delle classi CLASSI DI VULNERABILITÀ NELLA SCALA EMS 98

Cemento armato Muratura APPROCCIO TIPOLOGICO: stato di danno - scala EMS 98

APPROCCIO TIPOLOGICO: matrici di probabilità di danno Per ogni classe tipologica definiscono la probabilità che gli edifici ad essa appartenenti subiscano danni classificabili secondo uno dei sei stati di danno, dato un terremoto di assegnata intensità macrosismica. Si ricavano dall’analisi statistica dei danni in terremoti recenti 0.8 VI VII VIII IX X 0.7 0.6 Probabilità 0.5 0.4 Classe “A” 0.3 0.2 0.1 0 0 1 2 3 Stati di danno 4 5

APPROCCIO TIPOLOGICO: Matrici di probabilità di danno Classe “C” 0.8 VI VII VIII IX 0.7 Probabilità 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 1 2 3 Stati di danno 4 5 X

METODO INDIRETTO: indice di vulnerabilità d = f (q, s) q ⇒ indice di vulnerabilità V s ⇒ accelerazione massima del terreno y d ⇒ indice di danno legato al costo della riparazione L’approccio si articola in due passi: 1. determinazione dell’indice di vulnerabilità e dell’indice di danno 2. costruzione delle curve di fragilità che mettono in relazione la vulnerabilità, la severità del terremoto atteso e il danno.

METODO INDIRETTO: indice di vulnerabilità Schede di vulnerabilità per edifici (GNDT, primi anni ’90) Raccolgono alcune informazioni sulle caratteristiche degli elementi costitutivi dell'edificio, ritenute importanti per valutarne la capacità di un di resistere ai terremoti Sono costituite da due livelli: Livello 1: contiene dati relativi alla localizzazione, alla geometria ed alla tipologia dell'edificio Livello 2: contiene in senso stretto le informazioni utili per il calcolo della vulnerabilità Esistono schede per edifici in muratura ed in c.a., oltre che per edifici particolari (es. capannoni) La scheda di primo livello è comune a tutte le tipologie, cambia quella di secondo livello

SCHEDA DI VULNERABILITÀ DI 1° LIVELLO La scheda è strutturata in 8 sezioni 1. dati relativi alla scheda (chiave di identificazione dell'edificio, comune, scheda, squadra, data) 2. localizzazione dell'edificio (aggregato. edificio, toponomastica, vincoli di piano urbanistico 3. dati metrici (superfici, altezze interpiano, altezze minima e massima fuori terra) 4. uso (tipi di uso, stato, proprietà e conduzione dell'edificio, utilizzazione, utenza) 5. età della costruzione - interventi (tipi e classi di età) 6. stato delle finiture - impianti 7. tipologia strutturale (tipi di struttura verticale, orizzontale, scale, copertura) 8. estensione e livello del danno (estensione e livello di danno più frequente, e massimo, per strutture verticali, strutture orizzontali, scale, tamponature) si compila solo nel caso di rilevamenti effettuati a valle di un terremoto

SCHEDA DI 2° LIVELLO PER EDIFICI IN MURATURA 11 parametri . . . .

SCHEDA DI 2° LIVELLO PER EDIFICI IN MURATURA Qualità dell’informazione Classi Clas- Qual. si inf. ELEMENTI DI VALUTAZIONE Elementi di valutazione TIPO ED ORGANIZZAZIONE DEL SISTEMA RESISTENTE (S.R.) 14 Norm. nuove costruz. Norm. riparazioni Cord. o cat. tutti livelli Buoni amm. fra mur. Senza cord. cattivi amm. QUALITA' DEL S.R. 15 PARAMETRI Parametri 1 2 25 26 (cl. A) (cl. A) (cl. B) (cl. C) (cl. D) 1 2 3 4 5 Parametro 3. Resistenza convenzionale Tipologia struttura verticale τk (t/mq) 37 (vedi manuale) 38 Numero di piani N Area tot. cop. At (mq) 36 SCHEMI - RICHIAMI (MURATURA) Schemi - richiami Minimo fra Ax e Ay A (mq) Massimo fra Ax e Ay B (mq) 40 Coeff γ = B/A Area Ax (mq) 3 RESISTENZA CONVENZIONALE 16 27 45 Coeff. a0 = A/At Area Ay (mq) 49 q = (Ax+Ay) . h . pm / At + ps τk (t/mq) 53 C = a0τk / (qN).[1+(qN)/(1.5a0τk(1+γ))]1/2 Ad ogni parametro si assegna  una classe (A, B, C, D) in base agli elementi di valutazione  la qualità dell’informazione (E, M, B, A)

SCHEDA DI 2° LIVELLO PER EDIFICI IN MURATURA Qualità dell’informazione E - qualità elevata: informazioni prevalentemente dirette (misure effettuate in sito, letture di elaborati grafici affidabili, visione diretta degli elementi di informazione) con un grado di attendibilità vicino alla certezza. M - qualità media: informazioni prevalentemente dedotte (letture indirette quali quelle desunte da fotografie, misure desunte da elaborati non esecutivi, saggi non distruttivi di scarsa attendibilità, letture dirette su situazioni analoghe, informazioni orali di persone di fiducia del rilevatore) con un grado di attendibilità intermedio fra il precedente (E) ed il seguente (B). B - qualità bassa: informazioni prevalentemente presunte (misure dedotte da ragione- voli ipotesi conoscitive quali quelle sulle usuali modalità e sulle più frequenti scelte progettuali, informazioni orali diverse dalle precedenti) con un grado di attendibilità di poco superiore ad una scelta puramente casuale della classe. A - informazione assente: con un grado di attendibilità intorno ai limiti di una scelta casuale. In questi casi la valutazione del rilevatore ha valore puramente indicativo.

Scheda di 2° livello per edifici in muratura - Parametri 1/2 1. Tipo ed organizzazione del sistema resistente: valuta il funzionamento scatolare dell'organismo murario attraverso il rilievo della presenza di collegamenti ai piani, ammorsature agli spigoli 2. Qualità del sistema resistente: è influente su questo parametro l'omogeneità e la fattura del tessuto murario 3. Resistenza convenzionale: attraverso un calcolo speditivo, con l'ipotesi di solaio infinitamente rigido e di pura traslazione dei piani, in assenza di eccentricità in pianta, quantizza la resistenza in due direzioni perpendicolari delle strutture in elevazione 4. Posizione dell'edificio e delle fondazioni: con questo parametro vengono messi in conto alcuni aspetti relativi alle fondazioni ed al terreno di fondazione e ritenuti influenti sul comportamento sismico globale, quali alcune caratteristiche geotecniche 5. Orizzontamenti: si considera la rigidezza nel piano (funzionamento a diaframma), il tipo e l'efficacia dei collegamenti alle murature

Scheda di 2° livello per edifici in muratura - Parametri 2/2 6. Configurazione planimetrica: mette in conto la forma in pianta attraverso la valutazione dei rapporti fra lato corto e lato lungo e fra sporgenze e lato lungo 7. Configurazione in elevazione: mette in conto le variazioni e discontinuità in elevazione, quali la presenza di una torre, di un piano porticato 8. Distanza massima fra le murature: con questo parametro si vuole valutare l'efficacia delle murature perpendicolari come vincoli di una data parete 9. Copertura: la copertura è valutata, sia come una sorta di orizzontamento "privilegiato", sia per la eventuale presenza di elementi con spinte non equilibrate 10. Elementi non strutturali: con questo parametro si valuta l'influenza che ha sui danni conseguenti ad un evento sismico la presenza, il tipo ed il collegamento alle strutture di tutti quegli elementi non portanti quali comignoli, cornicioni, piccoli aggetti ecc. 11. Stato di fatto: mette in conto la diminuzione di resistenza (e di duttilità) conseguenti a lesioni, dissesti, stato di degrado negli elementi strutturali

Edifici in muratura: calcolo dell’indice di vulnerabilità Ad ogni parametro sono attribuiti un punteggio, in funzione della classe, ed un peso Parametro 1 2 3 4 5 6 7 8 9 10 11 Org. sist. resist. Qual. sist. res . Resist. convenzion. Pos. edif. e fond. Orizzontamenti Config. planim. Config. in elev. Dist. max. murat. Copertura Elem. non strutt. Stato di fatto A 0 0 0 0 0 0 0 0 0 0 0 Classe B C 5 20 5 25 5 25 5 25 5 15 5 25 5 25 5 25 15 25 0 25 5 25 Peso D 45 45 45 45 45 45 45 45 45 45 45 1.0 0.25 1.5 0.75 var 0.5 var 0.25 var 0.25 1.0 Per i parametri 5, 7 e 9 il peso è variabile in funzione di alcuni elementi caratteristici: percentuale degli orizzontamenti rigidi e ben collegati, presenza di piani porticati, peso della copertura.

Edifici in muratura: calcolo dell’indice di vulnerabilità • Il prodotto del punteggio per il relativo peso fornisce l'indice numerico parziale per il singolo parametro • la somma degli indici parziali porta all'indice di vulnerabilità, un numero che, utilizzando i valori indicati in tabella, risulta compreso tra 0 e 382.5 (dalla situazione di vulnerabilità "migliore" alla "peggiore") • L'indice viene solitamente normalizzato su una scala relativa e convenzionale 0 - 100

METODO INDIRETTO: indice di vulnerabilità Esempio di rappresentazione dell’indice di vulnerabilità in un centro urbano Indice di vulnerabilità degli edifici (I.V.) I.V. < 20 20 < I.V. < 40 40 < I.V. < 60 60 < I.V. < 80 80 < I.V. Non elaborato Non classificato

METODO INDIRETTO: relazione vulnerabilità-danno d = f ( V , y) Correlazione tra accelerazione e danno mediante curve di fragilità basate su danni osservati (per ogni valore di V e ogni valore di y si analizza la distribuzione del danno osservato)

METODO INDIRETTO: relazione vulnerabilità-danno Schema del processo di semplificazione = 0   y - yi d (y, V) =  yc - yi = 1  per y ≤ yi per y i < y < y c per y c ≤ y

METODO INDIRETTO: relazione vulnerabilità-danno 100 90 80 70 60 50 40 0.05 0.1 0.15 0.2 0.25 0.3 0.35 y(g) 30 20 10 0 -10 1.0 0.9 0.8 0.7 Danno 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 0.4 0.45 0.5 0.55 0.6 0.65

Analisi in aree estese • Impossibilità di effettuare sopraluoghi • Ricorso a dati esistenti – es.: ISTAT • Unità minima di rappresentazione – sezione di censimento • Informazione sugli edifici desunte dai dati sulle abitazioni • Utilizzo delle classi definibili in base ai dati disponibili

Analisi in aree estese Approccio tipologico • Riconoscimento delle tipologie A, B, C (numero di edifici e volumi) • Matrici di probabilità di danno Approccio dell’indice di vulnerabilità Classificazione (numero di edifici e volumi) in base a • Età (7 classi) • Numero di piani (3 classi) • Materiale (4 classi - muratura, cemento armato, cemento armato a pilotis, altro) • Stato di manutenzione (2 classi) • Edifici isolati o inseriti in aggregati (2 classi) Banca dati indice di vulnerabilità (distribuzione dei valori dell’indice) Curve di fragilità

Analisi in aree estese Valori medi e coefficienti di variazione dell'indice di vulnerabilità per le diverse classi di edifici in muratura e cemento armato in base all’età Edifici in muratura pre 1919 1919-1945 1946-1960 1961-1971 post 1971 tutti gli edif. buono stato di manutenzione N. edif. Vuln. med. Coeff. var. 662 55.15 0.262 473 49.46 0.246 452 47.73 0.270 322 43.15 0.258 212 37.91 0.205 4745 50.84 0.291 cattivo stato di manutenzione N. edif. Vuln. med. Coeff. var. 742 61.78 0.250 574 52.80 0.269 738 49.54 0.281 414 44.62 0.258 156 42.50 0.279 Edifici in cemento armato 1945-60 1961-71 post 1971 126 512 1084 53.35 50.86 43.25 0.494 0.503 0.501

Analisi in aree estese Distribuzione dell’indice di vulnerabilità per edifici in muratura con buono stato di manutenzione (dati Lunigiana e Garfagnana - 1 - edifici costruiti prima del 1919; 2 - edifici costruiti tra il 1919 e il 1945; 3 - edifici costruiti tra il 1946 e il 1960; 4 - edifici costruiti tra il 1961 e il 1971; 5 - edifici costruiti dopo il 1971)

Analisi in aree estese Esempio di mappa di vulnerabilità calcolata con il metodo tipologico Percentuale di abitazioni nella classe di vulnerabilità A della scala MSK, per i comuni italiani (sito http://www.protezionecivile.it)

RISCHIO SISMICO E SCENARIO SISMICO DI DANNO

RISCHIO SISMICO Entità dei danni che è lecito attendersi in un’area a causa di futuri eventi sismici. La misura del rischio è funzione del tipo di danno che si intende valutare: - in termini economici, i danni medi annui al costruito dovuti a tutti i futuri eventi sismici (valore del danno atteso medio annuo) - dal punto di vista della salvaguardia delle persone, il numero di vittime (valore atteso del numero di vittime) - ecc. La valutazione del rischio è di tipo probabilistico (si utilizza come dato la pericolosità di base calcolata con approccio probabilistico) Applicazione: utilità essenzialmente di tipo pianificatorio/amministrativo (es.: identificare le zone a maggior rischio per distribuire in modo ottimale le risorse per la sua mitigazione)

Esempio di mappa di rischio per singoli edifici

Progetto SAVE (GNDT, 2004) Esempi di mappe di rischio per aree (comuni) Rischio annuo del patrimonio edilizio coinvolto (% crolli) Crolli attesi con probabilità di superamento del 10% in 50 anni

SCENARIO DI DANNO Effetti causati, in un determinata area, da uno specifico evento Per definizione, il calcolo dello scenario di danno è di tipo deterministico: - si seleziona un evento sismico - si valuta la vulnerabilità della struttura o dell’area - tramite l’applicazione delle correlazioni danno/severità evento/vulnerabilità si calcola il danno Il danno (come detto per il rischio) può essere valutato con misure diverse a seconda dell’obiettivo per cui viene calcolato: misure in termini economici, vittime, ecc.. Applicazione: utilità tipica relativa alla pianificazione d’emergenza

Esempio di mappa di scenario di danno (aree)

Bibliografia Corsanego A. “Vulnerabilità sismica degli edifici e metodi per valutarla”, Ingegneria Sismica, Anno I, No. 1, 1984. Corsanego, A. & Petrini , V. 1994. Criteri di valutazione della vulnerabilità sismica del patrimonio edilizio esistente sul territorio nazionale, Ingegneria Sismica, vol. 1, Patron ed., pp. 16-24. Gruppo Nazionale per la Difesa dai Terremoti - CNR (1994),Scheda di esposizione e vulnerabilità di primo livello e di rilevamento danni, Gruppo Nazionale per la Difesa dai Terremoti - Roma. Guagenti E., Petrini V. (1989), Il caso delle vecchie costruzioni: verso una nuova legge danni-intensità, Proceedings of the 4th Italian National Conference on Earthquake Engineering, - Milan - (Italy), 1, 145-153, Milano. Grimaz, S., Meroni, F., Petrini, V., Tomasoni, R., and Zonno, G., 1996. Il ruolo dei dati di danneggiamento del terremoto del Friuli, nello studio di modelli di vulnerabilità sismica degli edifici in muratura, Proceedings of the Conference on “La scienza e i terremoti-Analisi e prospettive dall’esperienza del Friuli-1976/1996,” Udine, Italy, pp. 89–96. Grunthal, G., 1998. European Macroseismic Scale 1998. Cahiers du Centre Européen de Géodynamique et de Séismologie 15:

Bibliografia Braga, F., M. Dolce, D. Liberatore, “Southern Italy November 23, 1980 Earthquake: A Statistical Study on Damaged Buildings and an Ensuing Review of the M.S.K.-76 Scale”, pubblicazione CNR-PFG n.503, Rome 1982 G. Zuccaro (CD a cura di), Inventario e vulnerabilità del patrimonio edilizio residenziale del territorio nazionale, mappe di rischio e perdite socio - economiche – Napoli, 2004 (dal sito del progetto SAVE del GNDT 2004 - http://gndt.ingv.it/Att_scient/Prodotti_attesi_2004/Dolce_Zuccaro/Mappe/Start2.htm)

Add a comment

Related presentations

Related pages

VULNERABILITA' CLAN SUBITO CO-CAPO #2 - YouTube

VULNERABILITA' CLAN SUBITO CO-CAPO #2 ... 09:51. Giocando A Clash Of Clans e Royale 903 views. 1:09:51 ... INFURIATORE,BONUS DIFESA ED ALTRO! ...
Read more

09 boni vulnerabilita sismica-ws2014 - Education

Cybersecurity e Vulnerabilita' dei sistemi SCADA First presented at "IBM Safety & Security Workshop for Energy & Utilities" in Milan Sept. 2011, the ...
Read more

Convegno del Legno 2014: i presidenti - YouTube

Standard YouTube License; Loading ... 09:39. Marlegno ... Bonus Mobili per il giovani coppie: ...
Read more

Politecnico di Milano Dipartimento ABC – Architettura ...

Tentative Agenda WS 2014 – rilascio: 20/09/13 ... Relatore: Maria Pia Boni 9.15-11.15 ore:2 10. La mappatura del rischio per i beni architettonici: ...
Read more

Edilizia-Z

Ristrutturazioni ed ECO-BONUS Prorogata la detrazione fiscale del 55% per la sostituzione dei vecchi ... ipotecaria e catastale 13/09/2013 -È in vigore ...
Read more

Publications - Università degli Studi della Basilicata

Publications. Author and co-author ... Ditommaso R., Mucciarelli M., Vona M., Masi A., De Bonis M., 2010. ... Ultimo aggiornamento: 15-09-15 ...
Read more

HomeLab IT - Google+

Search; Images; Maps; Play; YouTube; News; Gmail; Drive; More. Calendar; Translate; Mobile; Books; Wallet; Shopping; Blogger
Read more

Claudio Viviani (HomeLab IT) - Google+

Claudio Viviani (HomeLab IT) - HomeLab ... analisi e mitigazione delle vulnerabilità SQL Injection Injection e SQL Injection Blind + Bonus ... 2015-09 -07 ...
Read more